Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
bn chép lại đề nhé
a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)
\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)
c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=2\left(a+b-c\right)\left(a+b+c\right)\)
d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)
\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)
tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá ><
e/ tương tự câu d nha bạn
f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)
\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)
\(=a^2\left(a+1\right)\left(a^2+2\right)\)
g/ đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành
\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)
\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)
\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)
xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)
\(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2\)
\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)
a, \(2x^2+2x+5x+5=2x\left(x+1\right)+5\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\)
b,\(2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
c,\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d,\(x^2-4x-5=x^2+x-5x-5=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
e,\(\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left(a^2-2a+1\right)\left(a^2+2a+1\right)=\left(a-1\right)^2\left(a+1\right)^2\)
1.a)\(x^2-ax+bx-ab=x\left(x-a\right)+b\left(x-a\right)=\left(x+b\right)\left(x-a\right)\)
b)\(x^2+ay-y^2-ax=\left(x-y\right)\left(x+y\right)-a\left(x-y\right)=\left(x+y-a\right)\left(x-y\right)\)
c)\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2.a)\(2x^2-12x=-18=>2x^2-12x+18=0=>x^2-6x+9=0=>\left(x-3\right)^2=0=>x-3=0=>x=3\)b)\(\left(4x^2-4x+1\right)-x^2=0=>3x^2-3x-x+1=3x\left(x-1\right)-\left(x-1\right)=\left(3x-1\right)\left(x-1\right)=0\)
\(=>\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)
a) 2x2 - 12x = -18
<=> 2x2 - 12x + 18 = 0
<=> 2(x2 - 6x + 9) = 0
<=> 2(x2 - 2.x.3 + 9) = 0
<=> 2(x - 3)2 = 0
<=> x - 3 = 0
<=> x = 0 + 3
<=> x = 3
b) (4x2 - 4x + 1) - x2 = 0
<=> 4x2 - 4x + 1 - x2 = 0
<=> 3x2 - 4x + 1 = 0
<=> 3x2 - x - 3x + 1 = 0
<=> x(3x - 1) - (3x - 1) = 0
<=> \(\orbr{\begin{cases}\left(3x-1\right)=0\\\left(x-1\right)=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)
a)
\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b)
\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
c)
\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
a) 16(4x+5)2 - 25(2x+2)2
\(=\left[4\left(4x+5\right)\right]^2-\left[5\left(2x+2\right)\right]^2\)
\(=\left[4\left(4x+5\right)+5\left(2x+2\right)\right]\left[4\left(4x+5\right)-5\left(2x+2\right)\right]\)
\(=\left(16x+20+10x+10\right)\left(16x+20-10x-10\right)\)
\(=\left(26x+30\right)\left(6x+10\right)\)
\(b,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-2y+1\right)\)
\(=\left(3x+2y+3\right)\left(-x-3y+5\right)\)
\(c,\left(x+1\right)^4-\left(x-1\right)^4\)
\(=\left(x+1\right)^{2^2}-\left(x-1\right)^{2^2}\)
\(=\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\)
\(=\left(x^2+2x+1+x^2-2x+1\right)\left[\left(x+1+x-1\right)\left(x+1-x+1\right)\right]\)
\(=\left(2x^2+2\right)2x.2\)
\(=4x.2\left(x^2+1\right)\)
\(=8x\left(x^2+1\right)\)
a)\(36-4a^2+20ab-25b^2=6^2-\left(4a^2-20ab+25b^2\right)\)
\(=6^2-\left[\left(2a\right)^2-2.2a.5b+\left(5b\right)^2\right]\)
\(=6^2-\left(2a-5b\right)^2\)
\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)
b)\(a^3+3a^2+3a+1-27b^3=\left(a+1\right)^3-\left(3b\right)^3\)(chỗ này mình sửa 27b2 thành 27b3 vì mình nghĩ nhầm đề)
\(=\left(a+1-3b\right)\left[\left(a+1\right)^2+\left(a+1\right)3b+\left(3b\right)^2\right]\)
\(=\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)
c)\(x^3+3x^2+3x+1-3x^2-3x=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
a) ( 4x2 - 3x - 18 )2 - ( 4x2 + 3x )2
= [ ( 4x2 - 3x - 18 ) - ( 4x2 + 3x ) ][ ( 4x2 - 3x - 18 ) + ( 4x2 + 3x ) ]
= ( 4x2 - 3x - 18 - 4x2 - 3x )( 4x2 - 3x - 18 + 4x2 + 3x )
= ( -6x - 18 )( 8x2 - 18 )
= -6( x + 3 ).2( 4x2 - 9 )
= -12( x + 3 )( 2x - 3 )( 2x + 3 )
b) 9( x + y - 1 )2 - 4( 2x + 3y + 1 )2
= 32( x + y - 1 )2 - 22( 2x + 3y + 1 )2
= [ 3( x + y - 1 ) ]2 - [ 2( 2x + 3y + 1 ) ]2
= ( 3x + 3y - 3 )2 - ( 4x + 6y + 2 )2
= [ ( 3x + 3y - 3 ) - ( 4x + 6y + 2 ) ][ ( 3x + 3y - 3 ) + ( 4x + 6y + 2 ) ]
= ( 3x + 3y - 3 - 4x - 6y - 2 )( 3x + 3y - 3 + 4x + 6y + 2 )
= ( -x - 3y - 5 )( 7x + 9y - 1 )
c) -4x2 + 12xy - 9y2 + 25
= 25 - ( 4x2 - 12xy + 9y2 )
= 52 - ( 2x - 3y )2
= [ 5 - ( 2x - 3y ) ][ 5 + ( 2x - 3y ) ]
= ( 5 - 2x + 3y )( 5 + 2x - 3y )
d) x2 - 2xy + y2 - 4m2 + 4mn - n2
= ( x2 - 2xy + y2 ) - ( 4m2 - 4mn + n2 )
= ( x - y )2 - ( 2m - n )2
= [ ( x - y ) - ( 2m - n ) ][ ( x - y ) + ( 2m - n ) ]
= ( x - y - 2m + n )( x - y + 2m - n )
1)\(\left(a^2-1\right)^2-4a^2\)
\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)
\(=\left(a-1\right)^2\left(a+1\right)^2\)
2)\(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-3\left(2x+6\right).2\left(4x^2-9\right)\)
\(=-6\left(2x+6\right)\left(2x-3\right)\left(2x+3\right)\)
K NHA!!!
câu 3 nha
= (a+b)2 +c2 +2(a+b)c + (a+b)2 +c2 -2(a+b)c -4c2
=2(a+b-2c)(a+b+2c)