Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x^2 + 13x + 10
= 3x^2 + 3x + 10x + 10
= 3x(x + 1) + 10(x + 1)
= (3x + 10)(x + 1)
b, x^2 - 10x + 21
= x^2 - 3x - 7x + 21
= x(x - 3) - 7(x - 3)
= (x - 7)(x - 3)
c, 6x^2 - 5x + 1
= 6x^2 - 3x - 2x + 1
= 3x(2x - 1) - (2x - 1)
= (3x - 1)(2x - 1)
Bạn đăng 1 lần nhiều bài như vậy làm người khác nản lắm đấy =) đơn giản bài rất dài mà mik cx ko chắc là bản thân mik có đc k hay ko nên phải nản vậy thôi :)
1a)\(3x^2+13x+10=3x^2+3x+10x+10\)
\(3x\left(x+1\right)+10\left(x+1\right)=\left(3x+10\right)\left(x+1\right)\)
b)\(x^2-10x+21=x^2-3x-7x+21\)
\(=x\left(x-3\right)-7\left(x-3\right)=\left(x-7\right)\left(x-3\right)\)
c)\(6x^2-5x+1=6x^2-3x-2x+1\)
\(=3x\left(2x-1\right)-\left(2x-1\right)=\left(3x-1\right)\left(2x-1\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài 2:
a: \(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
b: \(=x^{10}-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
a) \(a^2-2ab-15b^2=\left(a^2-2ab+b^2\right)-16a^2\)
\(=\left(a-b\right)^2-\left(4a\right)^2=\left(a-b-4a\right)\left(a-b+4a\right)=\left(-3a-b\right)\left(5a-b\right)\)
b) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
c) \(x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
ab+b2)−16a2
=(a−b)2−(4a)2=(a−b−4a)(a−b+4a)=(−3a−b)(5a−b)
b) x4+4=x4+4x2+4−4x2=(x2+2)−(2x)2=(x2−2x+2)(x2+2x+2)
c) x2−6x+8=(x2−2x)−(4x−8)=x(x−2)−4(x−2)=(x−4)(x−2)
a, \(x^8+x^7+1=x^8-x^2+x^7-x+x^2+x+1=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6+x^3-x^5-x^2+x^5+x^2-x^4-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
b, \(x^8+x^4+1=x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2+1-x^2\right)=\left(x^4-x^2+1\right)\left[\left(x^2+1\right)-x^2\right]=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
c, \(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)