Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
1) sửa đề: \(x^4+x^3-4x-4=x^3\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x^3-4\right)\)
2) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-ax\right)-\left(bx-ab\right)\)
\(=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(a-b\right)\)
3) \(5xy^3-2xyz-15y^2+6z=\left(5xy^3-15y^2\right)-\left(2xyz-6z\right)\)
\(=5y^2\left(xy-3\right)-2z\left(xy-3\right)=\left(xy-3\right)\left(5y^2-2z\right)\)
x2 - x - y2 - y
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
***
9x2 + y2 - 16z2 + 6xy
= (3x + y)2 - (4z)2
= (3x + y - 4z)(3x + y + 4z)
***
a3 - a2x - ay + xy
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
***
2x2 - 8y2 + 3x + 6y
= 2(x2 - 4y2) + 3(x + 2y)
= 2(x - 2y)(x + 2y) + 3(x + 2y)
= (x + 2y)(2x - 4y + 3)
***
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + z)
= y(x + y + z)(x + z) + xz(x + z)
= (x + z)(xy + y2 + yz + xz)
= (x + z)[y(x + y) + z(x + y)]
= (x + z)(x + y)(y + z)
a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )
b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )
c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )
d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy
= ( a2xy + abx2 ) + ( aby2 + b2xy )
= ax( ay + bx ) + by( ay + bx )
= ( ay + bx )( ax + by )
\(x^3-4x^2+4x-1\)
\(=x^3-x^2-3x^2+3x+x-1\)
\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-3x+1\right)\)
\(x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
\(=\left(x-y+2\right)\left(x+y-2\right)\)
\(x^4+x^3y-xy^3-y^4\)
\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Chúc bạn học tốt.
\(10\left(x-y\right)-8y\left(y-x\right)\)
\(=10\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10+8y\right)\)
\(=2\left(x-y\right)\left(5+4y\right)\)
a) 10(x-y)-8y(y-x)= 10(x-y)+8y(x-y) = (x-y)(10+8y)=2(x-y)(5+4y)
b) Bạn xem lại đầu bài nhé !
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
\(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a-x\right)\left(a^2-y\right)\)
\(4x^2-y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2=\left(2x-y+1\right)\left(2x+y+1\right)\)
\(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
a)a3 - a2x - ay +xy
=(a3 - a2x) - (ay - xy)
=a2(a-x) - y(a-x)
=(a-x).(a2 - y)