K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Lời giải:

Đặt đa thức đã cho là $P(a,b,c)$

Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$

$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$

$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$

$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$

Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$

Do đó: 
$P(a,b,c)=Aabc$

Thay $a=b=1, c=2$ ta có:

$8=2A\Rightarrow A=4$

Vậy $P=4abc$

 

30 tháng 10 2017

a) \(=x^2-2x-4x+8\)

\(=x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

c) \(=x^3-x-6x-6\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1-6\right)\)

\(=x\left(x+1\right)\left(x-7\right)\)

b: Sửa đề: \(a\left(b+c-a\right)^2+b\left(c+a-b\right)^2+c\left(a+b-c\right)^2+\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

24 tháng 10 2021

\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

Với \(a=-b\) ta được \(A=0\)

Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k

Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)

Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

Với \(a=b\Leftrightarrow B=0\)

Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất

Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số

\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)

Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)

Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)

Cho \(a=-b\Leftrightarrow C=0\)

Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2

Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số

\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)

Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)

Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

24 tháng 10 2021

\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

Với \(a=b+c\Leftrightarrow D=0\)

Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất

Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số

\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)

Cho \(a=b=c=1\Leftrightarrow Q=1\)

Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)