Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)
Mặt khác, ta có:
\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)
\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)
Vậy điều giả sử là sai.
Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.
\(\text{a(b+c-a)^2+ b(c+a-b)^2 + c(a+b-c)^2 + (a+b-c)(b+c-a)(c+a-b)}\) Phương pháp xét giá trị riêng
Lời giải:
Đặt đa thức đã cho là $P(a,b,c)$
Ta có:
$P(0,b,c)=b(c-b)^2+c(b-c)^2+(b-c)(b+c)(c-b)$
$=(b+c)(c-b)^2-(b+c)(b-c)^2=0$
$P(a,0,c)=a(c-a)^2+c(a-c)^2+(a-c)(c-a)(a+c)=0$
$P(a,b,0)=a(b-a)^2+b(a-b)^2+(a+b)(b-a)(a-b)=0$
Điều đó nghĩa là $a,b,c$ là nghiệm của $P(a,b,c)$
Do đó:
$P(a,b,c)=Aabc$
Thay $a=b=1, c=2$ ta có:
$8=2A\Rightarrow A=4$
Vậy $P=4abc$
b)
Áp dụng bđt AM - GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=\frac{2a}{c}\)
\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{c^2}{a^2}}=\frac{2c}{b}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{b^2}{c^2}.\frac{c^2}{a^2}}=\frac{2b}{a}\)
Cộng vế với vế ta được : \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
Hay \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)(đpcm)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)