K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2024

P = (a2 + b2) - (10a2 + b2) + 2.(2023b + 3ab) 

P = a2 + b2 - 10a2 - b2 + 2.2023b + 2.3ab

P = (a2 - 10a2) + (b2 - b2) + 2.2023.b + 2.3ab

P = -9a2  + 2.2023b + 2.3.ab

P  = (-9a2 + 2.3ab) + 2.2023b

P = -3a.(3a - 2b) + 2.2023b (1)

Thay 3a - 2b = 2023 vào (1) ta có:

P = -3a.2023 + 2.2023b

P =  -2023.(3a - 2b) (2) 

Thay 3a - 2b = 2023 vào  (2) ta có:

   P = -2023.2023

   P = - 20232

20 tháng 2 2024

sao khum ai giúp v :((

 

15 tháng 1 2018

Giống tui nhỉ

2 tháng 1 2020

dễ thôi . bạn bình  phương 2 cái họ cho  đó sau đó cộng  lại. tìm đc a^2 + b^2 bằng 5 thì phải ( mk nhẩm thế ) sao đó tính là xong

29 tháng 3 2023

\(a^3-3ab^2=-2\)

\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)

\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)

\(b^3-3a^2b=11\)

\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)

\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)

29 tháng 3 2023

Cảm ơn bạn nhahaha

2 tháng 9 2020

a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2

b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3

c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3

e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3

g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2

1 tháng 11 2024

a2 + b2 = 5

24 tháng 3 2019

Ta có :\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=2006^2\)

           \(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=2005^2\)

\(\Rightarrow\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=a^6-3a^4b^2+3a^2b-b^6\)

                                                                         \(=2006^2-2005^2\)

Hay \(\left(a^2-b^2\right)^3=4011\)

Vậy \(P=a^2-b^2=^3\sqrt{4011}\)

24 tháng 3 2019

Theo đề bài ta có:

\(a^3+3ab^2=2006\)

\(b^3+3a^2b=2005\)

\(\Rightarrow a^3+3ab^2-3a^2b-b^3=2006-2005\)

\(\Leftrightarrow a^3-3a^2b+3ab^2-b^3=1\)

\(\Leftrightarrow\left(a-b\right)^3=1\)

\(\Leftrightarrow a-b=1\)

Ta có:

\(P=a^2-b^2\)

\(P=\left(a-b\right)\left(a+b\right)\)

\(P=1\left(a+b\right)\)

VẬY \(P=a+b\)

15 tháng 12 2017

Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)

\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)

Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong

19 tháng 6 2021

@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu

3 tháng 9 2016

Giúp vs 

3 tháng 9 2016

Ta có (a3 - 3ab2)2 = a^6 - 6a^4b^2 + 9a^2b^4 = 4

(b^3 - 3a^2b)^2 = b^6 - 6a^2b^4 + 9a^4b^2 = 121

Cộng vế thep vế ta đựơc (a^2 + b^2)^3 = 125

=> a^2 + b^2 = 5

Thế vào 1 trong 2 cái đầu là giải ra

13 tháng 8 2018

1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)

\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\)