\(\in\)d sao cho

a)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)

NV
29 tháng 5 2020

Do M thuộc d nên tọa độ M có dạng: \(M\left(2y-3;y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(4-2y;3-y\right)\\\overrightarrow{MB}=\left(1-2y;4-y\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\left(5-4y;7-2y\right)\)

\(T=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(5-4y\right)^2+\left(7-2y\right)^2}\)

\(T=\sqrt{20y^2-68y+74}=\sqrt{20\left(y-\frac{17}{10}\right)^2+\frac{81}{5}}\ge\sqrt{\frac{81}{5}}\)

Dấu "=" xảy ra khi \(y=\frac{17}{10}\Rightarrow x=\frac{2}{5}\Rightarrow x+2y=\frac{19}{5}\)

8 tháng 5 2016

a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M

Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)

Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\)    \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)

Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)

 

 

8 tháng 5 2016

b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có

                                            \(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)

suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)

Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình

                                    \(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)

Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)

Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)

 

 

18 tháng 5 2017

M thuộc trục hoành Ox nên \(M\left(x;0\right)\).
\(\overrightarrow{MA}\left(5-x;5\right);\overrightarrow{MB}\left(3-x;-2\right)\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\left(8-x;3\right)\)
Ta có:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(8-x\right)^2+3^2}\ge\sqrt{3^2}=3\).
Vậy giá trị nhỏ nhất của \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) bằng 3 khi x = 8 hay \(M\left(8;0\right)\).

10 tháng 12 2018

a) Gọi \(D\left(x;y\right)\)

\(2\overrightarrow{DA}=\left(20-2x;10-2y\right)\\ 3\overrightarrow{DB}=\left(9-3x;6-3y\right)\\ -\overrightarrow{DC}=\overrightarrow{CD}=\left(x-6;y+5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}20-2x+9-3x+x-6=0\\10-2y+6-3y+y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{23}{4}\\y=\dfrac{21}{4}\end{matrix}\right.\)

10 tháng 12 2018

b)\(\overrightarrow{AF}=\left(-15;3\right)\\\overrightarrow{AB}=\left(-7;-3\right) \\ \overrightarrow{AC}=\left(-4;-10\right)\\\overrightarrow{AF}=a\overrightarrow{AB}+bAC\Rightarrow\left\{{}\begin{matrix}-7a-4b=-15\\-3a-10b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{81}{29}\\b=-\dfrac{33}{29}\end{matrix}\right.\)