K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

1.=> n+7-(n+2) chia hết cho n+2

=>n+7-n-2 chia hết cho n+2

=>5 chia hết cho n+2

=>n+2 thuộc Ư(5)=1;5

ta có bảng:

n+215
nloại 3   

Vậy n=3

MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ

4 tháng 11 2017

3.3n+15 chia hết cho n+1

=>3n+15-n+1 chia hết cho n+1

=>3n+15-3(n+1) chia hết cho n+1 

=>3n+15-3n-3 chia hết cho n+1 

=>12 chia hết cho n+1 

=>n+1 thuộc Ư(12)=1;2;3;4;6;12

ta có bảng:

n+1123412
n0123

11

Vậy n thuộc 0;1;2;3;11

1 tháng 11 2018

a) ta có: 1 -3n chia hết cho 2n +1

=> 2 - 6n chia hết cho 2n +1

=> 5 - 3 - 6n chia hết cho 2n +1

5 - 3.(1+2n) chia hết cho 2n + 1

...

bn tự làm tiếp đk r

b) ta có: 2-7n chia hết cho 2n + 5

=> 4 - 14n chia hết cho 2n + 5

=> 39 - 35 - 14n chia hết cho 2n + 5

39 - 7.(5+2n) chia hết cho 2n +5

...

c) ta có: 4n + 9 chia hết cho 3n + 1

=> 12n + 27 chia hết cho 3n + 1

12n + 4+23 chia hét cho 3n + 1

4.(3n+1) + 23 chia hết cho 3n + 1

...

1 tháng 11 2018

d) ta có: n^2 + 2n + 7 chia hết cho n+2

=> n.(n+2) + 7 chia hết cho n + 2

....

e) ta có: n^2 + n + 1 chia hết cho n + 1

=> n.(n+1) + 1 chia hết cho n + 1

...

27 tháng 1 2019

không biết làm

22 tháng 11 2019

a) Ta có:

17 chia hết cho n-3

=>n-3 thuộc Ư(17)

=>Ư(17)={-1;1;-17;17}

Ta có bảng sau:

n-3-11-1717
n24-1420
KLtmtmloạitm

Vậy....

22 tháng 11 2019

b) Ta có:

n+8 chia hết cho n+7

=>n+7+1 chia hết cho n+7

=>1 chia hết cho n+7

=>n+7 thuộc Ư(1)

=>Ư(1)={-1;1}

Xét:

+)n+7=-1=>n=-8(loại)

+)n+7=1=>n=-6(loại)

Vậy ko có gt nào của n thỏa mãn đk trên

20 tháng 8 2015

Dô câu hỏi tương tự đi bạn :) hi

9 tháng 3 2019

a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n

Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )

Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)

b, Ta có : \(168=2^3.3.7\)

- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )

\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\)     (1)

- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 ) 

Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\)   (2)

- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )

nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)

Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)

hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)

13 tháng 4 2020

n lớn hơn 1 nhé