K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

AYUASGSHXHFSGDB HAGGAHAJF

7 tháng 2 2017

\(\frac{1}{x\left(x-1\right)}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{3}{4}.\)

\(\Rightarrow\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}=\frac{3}{4}\)

\(\Rightarrow\frac{1}{x-1}-\frac{1}{x+2}=\frac{3}{4}\)

\(\Leftrightarrow4\left(x+2\right)-4\left(x-1\right)=3\left(x+2\right)\left(x-1\right)\)

\(\Leftrightarrow4x+8-4x+4=3x^2+3x-6\)

\(\Leftrightarrow3x^2+3x-18=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy nghiệm nhỏ nhất là \(x=-3.\)

12 tháng 3 2020

a) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\cdot\left(x-\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}+x-\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(2x-\frac{5}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=0\\2x-\frac{5}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{5}{8}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{4};\frac{5}{8}\right\}\)

b) ĐK : x khác 0

 \(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}+2=0\\1=x^2+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=-2\\x^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{2}\right\}\)

24 tháng 1 2018

Bài 1: 

\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Leftrightarrow x+66=0\)

\(\Leftrightarrow x=-66\)

b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)

Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

13 tháng 3 2019

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

13 tháng 3 2019

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé