K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Mình không biết! Xin lỗi nha! Nhớ tk mình! ~ Chúc bạn học giỏi ~ tth~ xin hết!

7 tháng 4 2017

hay nhể

9 tháng 3 2017

x-y-z=0 =>x-y=z => 2x - 2y =2z     (1)

x+2y-10z=0 => x+2y =10z             (2)

Cộng 2 vế (1) và (2) : =>3x=12z  => x=4z

Thay x=4z vào x-y-z=0 ta đc:

4z-y-z=0 => 3z-y=0   => y=3z

Thay x=4z;y=3z vào B ta tính đc B=8

9 tháng 3 2017

hjhj kb vs mik nhé 

1 tháng 11 2018

đặt k là cah hay nhat bn ak

14 tháng 2 2017

\(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)

\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)

Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)

=> 

14 tháng 2 2017

 Cho a+b+c=0 và a+b2 +c=1.Tìm a4+b4+c4.

Do \(x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right)\Rightarrow x^2=\left(y+z\right)^2\Rightarrow4yz-x^2=4yz-\left(y+z^2\right)=-\left(y-z\right)^2\)

Tương tự \(4zx-y^2=-\left(z-x\right)^2\)

               \(4xy-z^2=-\left(x-y\right)^2\)

Ta lại có: \(yz+2x^2=yz+x^2-x\left(y+z\right)=yz+x^2-xy-xz=\left(x-y\right)\left(x-z\right)\)

Tương tự: \(zx+2y^2=\left(y-x\right)\left(y-z\right)\)

                \(xy+2z^2=\left(y-z\right)\left(y-y\right)\)

\(P=\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y^2\right)}{\left(x-y\right)\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}=1\)

Ta có : \(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)

\(\Rightarrow\left(4x^2+y^2+z^2-4xy-4zx+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\forall x,y,z\\\left(y-3\right)^2\ge0\forall y\\\left(z-5\right)^2\ge0\forall z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-y-z\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-3-5=0\\y=3\\z=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=8\\y=3\\z=5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\left(1\right)\)

Lại có : \(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)

Thay \(\left(1\right)\)vào \(S\),ta được :

\(S=0^{2017}+\left(-1\right)^{2017}+1^{2017}\)

    \(=0-1+1=0\)

Vậy \(S=0\)