K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

Vì n không chi hế cho 3 => n chia 3 dư 1 hoặc n chia 3 dư 2

=> n có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N )

+) Với n = 3k + 1 => n2 = ( 3k + 1 )2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3( 3k2 + 2k ) + 1

Vì 3( 3k2 + 2k ) chia hết cho 3 => 3( 3k2 + 2k ) + 1 chia 3 dư 1 ( 1 )

+) Với n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2)( 3k + 2) = 9k2 + 12k + 4 = 3( 3k2 + 4k + 1 ) + 1

Vì 3( 3k2 + 4k + 1 ) chia hết cho 3 => 3( 3k2 + 4k + 1 ) + 1 chia 3 dư 1 ( 2 )

Từ (1) ; ( 2 ) => n2 chia 3 dư 1 ( đpcm )

1 tháng 11 2017

Giải:

Ta có:

\(n⋮̸3\)

=> n chia cho 3 dư 1 hoặc 2

Xét các trường hợp:

+ n chia 3 dư 1: \(n=3k+1\Rightarrow n^2=\left(3k+1\right)\left(3k+1\right)=9k^2+6k+1=3\left(3k^2+2k\right)+1\)

\(\Leftrightarrow\) n2 chia cho 3 dư 1.

+ n chia 3 dư 2: \(n=3k+2\Rightarrow n^2=\left(3k+2\right)\left(3k+2\right)=9k^2+12k+4=3\left(3k^2+4k+1\right)+1\)

\(\Leftrightarrow\) n2 chia cho 3 dư 1. Vậy ... Chúc bạn học tốt!
11 tháng 11 2017

vì số ko chia hết cho 3 có dạng 3k+1 và 3k+2

TH1:Với n =3k+1 ta có:(3k+1)=9k+ 1

        Vì 9 chia hết cho 3 => 9kchia hết cho 3

            mà 1 chia 3 dư 1=>nchia 3 dư 1(đpcm)

TH2: Với n=3k+2 ta có :(3k+2)=9k+4

        Vì 9 chia hết cho 3 => 9kchia hết cho 3

            mà 4 chia 3 dư 1=> n^2 chia 3 dư 1(đpcm)

11 tháng 11 2017

a ko chia hết cho 3 nên a có dạng 3k+1hoặc 3k+2

nếu có dang 3k+1 thì a^2 =6k^2+1(chia cho 3 dư 1)

nếu a có dạng 3k+2 thì a^2 =6k^2+4 chia 3 dư 1(do 6k^2:3mà4 chia 3 dư 1 )

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2 

2 tháng 11 2016

n ko chia hết cho 3 nên n=3k+1

n^2=(3k+1)^2=9k^2+6k+1=3k(3k+2)+1

3k(3k+2) chia hết cho 3

1 không chia hết cho 3

vậy n^2 chia cho 3 dư 1

19 tháng 12 2016

n2 chia cho chia 3 dư 1 thì ta chứng minh (n2-1) chia hết cho 3