Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gắn hệ trục tọa độ Oxy như hình dưới:
Gọi A vị trí hàng rơi xuống, khi đó \({y_A} = 0\). Ta có, tọa độ của A thỏa mãn:
\(\left\{ \begin{array}{l}x = 50t\\y = 80 - \frac{1}{2}.9,8.{t^2}\end{array} \right.\)
Mà \({y_A} = 0 \Rightarrow 0 = 80 - \frac{1}{2}.9,8.{t^2} \Leftrightarrow {t^2} \approx 16,33 \Rightarrow t \approx 4(s)\)
Do đó \({x_A} = 50.4 = 200(m)\) hay khoảng cách giữa máy bay và thùng hàng cứu trợ là 200m.
Vậy để thùng hàng cứu trợ rơi đúng vị trí được chọn thì máy bay cần thả hàng khi cách điểm đó 200m.
Theo đề bài ta có :
Lúc đi:
147x+105y+126z=17640(1)
Khi về do hướng đi ngược lại nên đoạn lên dốc và xuống dóc sẽ đổi cho nhau : x,y lần lượt là đoạn xuống dốc và đoạn lên dốc . Ta có :
105x+147y+126z=26460(2)
Lấy (1)+(2) Ta rút gọn nên được :
Gọi x(km/h) là vận tốc thực của thuyền máy
ĐK:x\(\ge\)2
Vận tốc lúc xuôi dòng: x+2 km/h
Vận tốc lúc ngược dòng: x-2 km/h
Thời gian lúc xuôi dòng từ A đến B: \(\frac{42}{x+2}\) h
Thời gian lúc ngược dòng từ B về A: \(\frac{42}{x-2}\) h
Vì thời gian lúc ngược dòng nhiều hơn thời gian xuôi dòng là 1 h 12' =\(\frac{6}{5}\)h nên ta có phương trình:
\(\frac{42}{x-2}-\frac{42}{x+2}=\frac{6}{5}\)
=>6x2-864=0
Giải phương trình ta được: x1=12(nhận) ; x2=-12(loại)
Vậy vận tốc xuôi dòng là 14 km/h vận tốc ngược dòng là 10 km/h