Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2a = 80 => a = 40
2b = 40 => b = 20
c2 = a2 – b2 = 1200 => c = 20√3
Phải đóng đinh tại các điểm F1 , F2 và cách mép ván:
F2A = OA – OF2 = 40 – 20√3
=> F2A = 20(2 – √3) ≈ 5,4cm
Chu vi vòng dây bằng: F1.F2+ 2a = 40√3 + 80
=> F1.F2 + 2a = 40(2 + √3)
F1.F2 + 2a ≈ 149,3cm
Ta có: 2a = 80 => a = 40
2b = 40 => b = 20
c2 = a2 – b2 = 1200 => c = 20√3
Phải đóng đinh tại các điểm F1 , F2 và cách mép ván:
F2A = OA – OF2 = 40 - 20√3
=> F2A = 20(2 - √3) ≈ 5,4cm
Chu vi vòng dây bằng: F1.F2+ 2a = 40√3 + 80
=> F1.F2 + 2a = 40(2 + √3)
F1.F2 + 2a ≈ 149,3cm
Giả sử Elip có phương trình
Độ dài trục lớn bằng 80cm ⇒ 2a = 80cm ⇒ a =40cm
Độ dài trục nhỏ bằng 40cm ⇒ 2b = 40cm ⇒ b = 20cm
Khi đó ⇒ F1F2 = 2c = 40√3 cm
Khoảng cách từ vị trí hai chiếc đinh F1, F2 đến hai mép là:
Độ dài vòng dây cuốn: MF1 + MF2 + F1F2 = 2a + 2c = 80 + 40√3 ≈ 149,3cm.
Từ giải thiết ta có: \(2a = 80 \Rightarrow a = 40,2b = 40 \Rightarrow b = 20\)
Suy ra, \(c = \sqrt {{a^2} - {b^2}} = 20\sqrt 3 \)
Suy ra vị trí đinh cách mép là \(a - c = 40 - 20\sqrt 3 = 5,36\) cm
Chiều dài vòng dây là \(2a + 2c = 2.40 + 2.20\sqrt 3 = 149,28\) cm
Vậy phải ghim hai cái đinh cách các mép tấm bìa 5,36 cm và lấy vòng dây có độ dài là 149,28 cm
Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)
Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)
Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)
Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)
a) Vẽ lại parabol mô phỏng mặt cắt trên như hình dưới
Ta có: \(OA = 1,BC = 2{y_B} = 6 \Rightarrow B\left( {1;3} \right)\)
Giả sử phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
Thay tọa độ điểm B vào phương trình \({y^2} = 2px\) ta có: \({3^2} = 2p.1 \Rightarrow p = \frac{9}{2}\)
Vậy phương trình chính tắc của parabol mô phỏng mặt cắt trên là \({y^2} = 9x\)
b) Khoảng cách từ tâm đường ống đến đỉnh của parabol chính là độ dài từ đỉnh tới tiêu điểm của parabol
Từ phương trình chính tắc ta có tiêu điểm \(F\left( {\frac{9}{4};0} \right)\)
Vậy khoảng cách từ tâm đường ống đến đỉnh của parabol là \(\frac{9}{4}\) m
Phương trình chính tắc của parabol (P) có dạng \({y^2} = 2px\left( {p > 0} \right)\).
a) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1m trên thực tế, ta có \(B\left( {20;200} \right)\).
Thay tọa độ điểm B vào phương trình của (P) ta được \({200^2} = 2p.20 \Leftrightarrow p = 1000\).
Vậy phương trình chính tắc của (P) là: \({y^2} = 2000x\).
b) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1km trên thực tế, ta có \(B\left( {0,02;0,2} \right)\).
Tương tự, ta có phương trình chính tắc của (P) là \({y^2} = 2x\).
a) Ta vẽ lại parabol và chọn hệ trục tọa độ như hình dưới
Giả sử phương trình chính tắc của parabol có dạng \({y^2} = 2px\)
Từ giả thiết ta có: \(AB = 2{y_A} = 16 \Rightarrow {y_A} = 8 \Rightarrow A\left( {0,03;8} \right)\)
Thay tọa độ điểm A vào phương trình \({y^2} = 2px\)ta được \({8^2} = 2p.0,03 \Rightarrow p = \frac{{3200}}{3}\)
Vậy Phương trình chính tắc của parabol có dạng \({y^2} = \frac{{6400}}{3}x\)
b) Thay \(x = 1\)vào phương trình \({y^2} = \frac{{6400}}{3}x\) ta có \({y^2} = \frac{{6400}}{3}.1 \Rightarrow y = \frac{{80\sqrt 3 }}{3} \simeq 46,2\)
Vậy điểm có độ võng 1 cm cách tâm ván gỗ gần bằng 46,2 m
Chú ý khi giải: đổi về cùng đơn vị đo