K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Vẽ lại parabol mô phỏng mặt cắt trên như hình dưới

Ta có: \(OA = 1,BC = 2{y_B} = 6 \Rightarrow B\left( {1;3} \right)\)

Giả sử phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

Thay tọa độ điểm vào phương trình \({y^2} = 2px\) ta có: \({3^2} = 2p.1 \Rightarrow p = \frac{9}{2}\)

Vậy phương trình chính tắc của parabol mô phỏng mặt cắt trên là \({y^2} = 9x\)

b) Khoảng cách từ tâm đường ống đến đỉnh của parabol chính là độ dài từ đỉnh tới tiêu điểm của parabol

Từ phương trình chính tắc ta có tiêu điểm \(F\left( {\frac{9}{4};0} \right)\)

Vậy khoảng cách từ tâm đường ống đến đỉnh của parabol là \(\frac{9}{4}\) m

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)

Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)

Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)

Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Chiều cao là 4 m tương ứng với \(b = 4\)

Chiều rộng bằng 10 m nên \(2a = 10 \Rightarrow a = 5\)

Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{16} = 1\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Phương trình chính tắc của parabol (P) có dạng \({y^2} = 2px\left( {p > 0} \right)\).

a) Khi 1 đơn vị đo trong mặt phẳng  tọa độ ứng với  1m trên thực tế, ta có \(B\left( {20;200} \right)\).

Thay tọa độ điểm B vào phương trình của (P) ta được \({200^2} = 2p.20 \Leftrightarrow p = 1000\).

Vậy phương trình chính tắc của (P) là: \({y^2} = 2000x\).

b) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1km trên thực tế, ta có  \(B\left( {0,02;0,2} \right)\).

Tương tự, ta có phương trình chính tắc của (P) là \({y^2} = 2x\).

13 tháng 9 2019

Đáp án: B.

Ta có khoảng cách từ tiêu điểm đến đường chuẩn của một parabol bằng p ⇒ p = 2

Vậy phương trình chính tắc của parabol là:  y 2  = 2.2x ⇔  y 2  = 4x

7 tháng 6 2018

Đáp án: B

Ta có: d(F;Δ) = p = 2 ⇒ (P): y 2  = 4x

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Tiêu điểm có tọa độ \((4;0)\) nên ta có \(p = 8\)

Suy ra phương trình chính tắc của parabol là: \({y^2} = 16x\)

b) Đường chuẩn có phương trình \(x =  - \frac{1}{6}\), nên ta có \(p =  - \frac{1}{3}\)

Suy ra phương trình chính tắc của parabol có dạng \({y^2} =  - \frac{2}{3}x\)

c) Gọi phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

Thay tọa độ điểm \((1;4)\) vào phương trình \({y^2} = 2px\) ta có:

\({4^2} = 2p.1 \Rightarrow p = 8\)

Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)

d) Gọi \(F\left( {\frac{p}{2};0} \right)\), \(\Delta :x + \frac{p}{2} = 0\) lần lượt là tiêu điểm và phương trình đường chuẩn của parabol ta có:

\(d\left( {F,\Delta } \right) = \frac{{\left| {\frac{p}{2} + \frac{p}{2}} \right|}}{1} = 8 \Rightarrow p = 8\)

Vậy phương trình chính tắc của parabol là \({y^2} = 16x\)

10 tháng 4 2017

Pra bol đối xứng qua trục Tung => điểm cao nhất thuộc Parabol có tọa độ (2,h)

\(x=2\Rightarrow y=\dfrac{1}{2}\Rightarrow a.2^2=\dfrac{1}{2}\Rightarrow a=\dfrac{1}{8}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Từ giả thiết ta có tiêu điểm \(F(5;0)\), suy ra \(\frac{p}{2} = 5\) hay \(p=10\).

Vậy phương trình chính tắc của parabol là: \({y^2} = 20x\)

Chiều sâu của gương là 45 cm tương ứng với \({x_A} = 45\), thay \({x_A} = 45\) vào phương trình \({y^2} = 20x\) ta có: \({y^2} = 20.45 = 900 \Rightarrow {y_A} = 30 \Rightarrow AB = 2{y_A} = 60 \)

Vậy khoảng cách AB là \(60 cm\)