Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một người đi trên thang cuốn. Lần đầu khi đi lên người đó đếm được 60 bậc, lần thứ 2 khi đi xuống người đó đếm được 100 bậc. Nếu thang đứng yên người đó bước được bao nhiêu bậc thì hết thang?
* Đề câu a hình như là tính v2 bạn nhé, vì v1 đề đã cho biết rồi
________________________________________
a) Thời gian đi của người anh là
\(t_1=\frac{S}{2v_1}+\frac{S}{2v_2}=\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)\)
Mà vtb=8 km/h
=> \(\frac{S}{\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)}=\frac{2v_1v_2}{v_1+v_2}=8\)
Thay v1=5
=> v2= 20
Mặt khác ta có
\(\frac{AC}{v_1}=\frac{BC}{v_2}=\frac{AC+BC}{5+20}=\frac{S}{25}\)=t' ( Trong đó C là điểm mà người em được bạn chở đi, còn AB là quãng đường từ nhà đến trường)
=> \(v_{tb}=\frac{S}{t'}=\frac{S}{\frac{S}{25}}=25\)( km/h)
Câu hỏi của Phong Nguyễn Trần - Vật lý lớp 8 | Học trực tuyến
tìm trc đi suy nghĩ mệt lắm
2.
a,Gọi v, v' lần lượt là vận tốc thuyền, vận tốc nước.
Do thời gian đi bé hơn thời gian về.
=> lúc đi cuôi dòng lúc về ngược dòng.
b, Ta có: \(v+v'=\dfrac{s}{t_1}=\dfrac{16}{1}=16\left(\dfrac{km}{h}\right)\left(1\right)\)
\(v-v'=\dfrac{s}{t_2}=\dfrac{16}{1,5}=11,7\left(\dfrac{km}{h}\right)\left(2\right)\)
Lấy (1)+(2) ta có: \(2v=27.7\Rightarrow v=13,85\left(\dfrac{km}{h}\right)\)
\(\Rightarrow v'=2,15\left(\dfrac{km}{h}\right)\)
c,P/s: Vận tốc thuyền so với nước ám chỉ vân tốc xuôi dòng đó.
Theo bài ra ta có: \(t_3=\dfrac{s}{v-v'}=\dfrac{16}{v-v'}=1\Rightarrow v-v'=\dfrac{16}{1}=16\left(\dfrac{km}{h}\right)\)
Vậy ............
a/ Gọi t là thời gian hai xe gặp nhau
Quãng đường mà xe gắn máy đã đi là :
S1= V1.(t - 6) = 50.(t-6)
Quãng đường mà ô tô đã đi là :
S2= V2.(t - 7) = 75.(t-7)
Quãng đường tổng cộng mà hai xe đi đến gặp nhau.
AB = S1 + S2
\(\Leftrightarrow\) AB = 50. (t - 6) + 75. (t - 7)
\(\Leftrightarrow\)300 = 50t - 300 + 75t - 525
\(\Leftrightarrow\)125t = 1125
\(\Leftrightarrow\) t = 9 (h)
\(\Leftrightarrow\) S1=50. ( 9 - 6 ) = 150 km
Vậy hai xe gặp nhau lúc 9 h và hai xe gặp nhau tại vị trí cách A: 150km và cách B: 150 km.
b/ Vị trí ban đầu của người đi bộ lúc 7 h.
Quãng đường mà xe gắn mắy đã đi đến thời điểm t = 7h.
AC = S1 = 50.( 7 - 6 ) = 50 km.
Khoảng cách giữa người đi xe gắn máy và người đi ôtô lúc 7 giờ.
CB =AB - AC = 300 - 50 =250km.
Do người đi xe đạp cách đều hai người trên nên:
DB = CD = \(\frac{CB}{2}=\frac{250}{2}=125\). km
Do xe ôtô có vận tốc V2=75km/h > V1 nên người đi xe đạp phải hướng về phía A.
Vì người đi xe đạp luôn cách đều hai người đầu nên họ phải gặp nhau tại điểm G cách B 150km lúc 9 giờ. Nghĩa là thời gian người đi xe đạp đi là:
rt = 9 - 7 = 2giờ
Quãng đường đi được là:
DG = GB - DB = 150 - 125 = 25 km
Vận tốc của người đi xe đạp là.
V3 = \(\frac{DG}{\Delta t}=\frac{25}{2}=12,5\) km/h
Gọi t là thời điểm hai xe gặp nhau.
Quãng đường mà xe gắn máy đã đi:
S1=V1.(t-6)=50.(t-6)
Quãng đường mà ôtô đã đi:
S2=V2.(t-7)=75.(t-7)
Quãng đường tổng cộng mà hai xe đến gặp nhau:
AB=S1+S2
300 = 50.(t-6) + 75.(t-7)
300 = 50.t - 50.6 + 75.t - 75.7
t = 9h
Vậy hai xe gặp nhau lúc 9h
Cách A số km là:
S1= 50. (9-6)=150 km
Bài 1: Tóm tắt
\(S_1=24km\)
\(V_1=12km\)/\(h\)
\(S_2=12km\)
\(V_2=45'=0,75h\)
_______________
a) \(t_1=?\)
b) \(V_{TB}\)
Giải
a) Thời gian người đó đạp xe trên quãng đường đầu là: \(t_1=\frac{S_1}{V_1}=\frac{24}{12}=2\left(h\right)\)
b) Ta có công thức tính vận tốc trung bình là: \(V=\frac{S_1+S_2+....+S_n}{t_1+t_2+t_3+....+t_n}\)
Vậy vận tốc trung bình của người đó trên quãng đường là:
\(V_{TB}=\frac{S_1+S_2}{t_1+t_2}=\frac{24+12}{2+0,75}\approx13\)(km/h)
Bài 2: Tóm tắt
\(S_1=600m=0,6km\)
\(t_1=2'=\frac{1}{30}\left(h\right)\)
\(S_2=10,8km\)
\(t_2=0,75h\)
_________________
a) \(V_1=?;V_2=?\)
b) \(S_{KC}=?\)
Giải
a) Vận tốc của người thứ nhất là: \(V_1=\frac{S_1}{t_1}=\frac{0,6}{\frac{1}{30}}=18\)(km/h)
Vận tốc của người thứ 2 là: \(V_2=\frac{S_2}{t_2}=\frac{10,8}{0,75}=14,4\) (km/h)
=> Người thứ nhất đi nhanh hơn người thứ 2.
b) Do đi cùng lúc => thời gian đi của 2 người là như nhau và vận tốc đã cho
=> Hai người cách nhau số km là: \(S-t\left(V_1+V_2\right)=S-\frac{1}{3}\left(18+14,4\right)=S-10,8\)
Theo đề thì còn cần phải dựa vào khoảng cách của 2 người khi 2 người bắt đầu đi nữa.
a) Thời gian người đó đạp xe trên quãng đường thứ nhất là :
24 : 12 = 2 (giờ)
b) Đổi : 45 phút = 0,75 giờ
=> Vận tốc trung bình của người đi xe đạp trên cả quãng đường là :
(S1 + S2) / (t1 + t2) = (12+24) / (2+0,75) = 13 (km/h)
Gọi V0, l, n lần lượt là vận tốc của người, chiều dài thang và số bậc thang
Số bậc của một đơn vị chiều dài là \(n_0=\dfrac{n}{l}\)
Gọi v là vận tốc lúc đầu của người đó, ta có: Thời gian đi hết chiều dài thang:\(t_1=\dfrac{l}{v+v_0}\)
Quãng đường đi dọc theo thang lần đầu là:\(S_1=t_1.v=\dfrac{v.l}{v+v_0}\)
Do đó số bậc bước lần đầu là:\(n=n_0.S_1=\dfrac{v.v}{v+v_0}=1+\dfrac{v_0}{v}=\dfrac{n}{n_1}\left(1\right)\)
Tương tự cho lần đi thứ hai với vận tốc là 3v, ta có\(1+\dfrac{v_0}{3v}=\dfrac{n}{n_2}\left(2\right)\)
Từ (1) và (2) suy ra: n = ...
Thay số vào tính
V0 phải là vận tốc thang nhé ko phải vận tốc người