Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi L là khoảng cách giữa quầy này với quầy khác
Vận tốc của thang cuốn là
v1 = \(\dfrac{L}{t_1}=\dfrac{L}{3}\)
Vận tốc đi của người đó là:
v2 = \(\dfrac{L}{t_2}=\dfrac{L}{2}\)
a) khi chuyển động cùng chiều với thang cuốn thi vận tốc của người đó so với mặt đất là:
vc = v1 + v2 = \(\dfrac{L}{3}+\dfrac{L}{2}=\dfrac{5}{6}L\)
Thời gian khi đi cùng chiều với than cuốn là:
tc =\(\dfrac{L}{v_c}=\dfrac{L}{\dfrac{5}{6}L}=1,2\left(ph\text{út}\right)\)= 1 phút 12 giây
b) Khi chuyển động ngược chiều với thang cuốn thì vận tốc của người đó so với mặt đất là:
vn = v2 - v1 = \(\dfrac{L}{2}-\dfrac{L}{3}\)=\(\dfrac{L}{6}\)
Thời gian khi đi ngược chiều với than cuốn là:
tn = \(\dfrac{L}{v_n}=\dfrac{L}{\dfrac{L}{6}}=6\left(ph\text{út}\right)\)
a)ta có:
đi từ A đến B:
\(\left(v_t+v_n\right)t_1=6\)
\(\Leftrightarrow v_t+v_n=6\left(1\right)\)
đi từ B về A:
\(\left(v_t-v_n\right)t_2=6\)
\(\Leftrightarrow1,5v_t-1,5v_n=6\left(2\right)\)
từ hai phương trình (1) và (2) ta có:
vt=5km/h
vn=1km/h
b)ta có:
muốn thời gian đi B về A trong 1h thì:
\(\left(v_t'-v_n\right)t=6\)
\(\Leftrightarrow v_t'-1=6\)
từ đó ta suy ra vt'=7km/h
-vận tốc của thuyền với nc là V1V1
- Vận tốc của nước với bờ là V2V2
Vxuôi.dòngVxuôi.dòng = V1+V2V1+V2
Vngược.dòngVngược.dòng = V1−V2V1−V2
=> Vxuôi.dòngVxuôi.dòng > Vngược.dòngVngược.dòng
<=> txuôi.dòngtxuôi.dòng < tngược.dòngtngược.dòng
=> nước chảy theo chiều từ A->B
____________
b)
Vxuôi.dòngVxuôi.dòng = V1+V2V1+V2
<=> Stxuôi.dòngStxuôi.dòng = V1+V2V1+V2
<=> V1+V2V1+V2 = 6 (1)
Vngược.dòngVngược.dòng = V1−V2V1−V2
<=> V1−V2V1−V2 =4 (2)
kết hợp (1) , (2) giải hệ pt => V1=5V1=5... V2=1V2=1
- Gọi quãng đường cầu thang là S ( m )
=> Vận tốc của thang cuốn là : \(\dfrac{S}{60}\left(m/s\right)\)
- Vận tốc chạy trung bình của người đó là : \(\dfrac{S}{180}\left(m/s\right)\)
=> Vận tốc di chuyển trung bình của người đó khi vừa chạy và thang chuyển động là : \(\dfrac{S}{60}+\dfrac{S}{180}=\dfrac{S}{45}\left(m/s\right)\)
=> Thời gian đi hết thang nếu thang chuyển động và người di chuyển là :
\(t=\dfrac{S}{v}=\dfrac{S}{\dfrac{S}{45}}=45\left(s\right)=0,75^{,^{ }}\)
Vậy ...
Ta có t1= S/ V1 = 1 => V1=S
t2 = S/ V2 = 3 => 3V2=S
=> V1= 3V2 Tức V1+V2 = V1 + 1/3 V1 (đúng chưa nào )
Từ trên ta có : V1+V2 = S / t3 (1) ( gọi thời gian cần tìm là t3 nhé)
Mặt khác ta có V1+ V2 = V1+ 1/3 V1 = 4/3 V1 đúng chưa nào . Thay vào (1) ta có:
4/3 V1 = S / t3 = S : 3/4 t1 ( vì V = S / t nên V tỉ lệ nghịc với t đúng chưa nào )
Từ trên ta có t3 = 3/4 t1 = 3/4 60s = 45 s
Đáp số : t3 = 45s
Tóm tăts:
s = 6km
t = 1h
t' = 1h30' = 1,5h
________________
a) Chiều nước chảy ?
b) v = ?
v' = ?
c) v" = ?
Giải:
a) Vì thời gian đi nhanh hơn thời gian về (t < t') nên nước chảy theo chiều từ A -> B.
b) Tổng vận tốc của thuyền và nước là:
t = s/(v + v')
Hay: 6/(v+v') = 1 (h)
<=> v + v' = 6 (km/h)
Hiệu vận tốc của thuyền và nước là:
t' = s/(v - v')
Hay: 6/(v - v') = 1,5 (h)
<=> v - v' = 4 (km/h)
Vận tốc thực của thuyền là:
v = (4 + 6) / 2 = 5 (km/h)
Vận tốc đòng nước là:
v' = (6-4) / 2 = 1 (km/h)
c) Nếu thời gian về là 1h thì vận tốc của thuyền là:
t = s/(v" - v')
Hay: 6/(v" - 1) = 1 (h)
<=> v" = 7 (km/h)
Vậy
a)
- Vận tốc của thuyền với nc là V1
- Vận tốc của nước với bờ là V2
Vxuôi dòng = V1+V2
Vngược dòng = V1−V2
=> Vxuôi dòng > Vngược dòng
<=> txuôi dòng < tngược dòng
=> Nước chảy theo chiều từ A -> B
b)
V xuôi dòng = V1+V2
<=> S/txuôi.dòng = V1+V2
<=> V1+V2 = 6 (1)
Vngược dòng = V1−V2
<=> V1−V2 = 4 (2)
Kết hợp (1) , (2) giải hệ pt => V1 = 5 ; V2 = 1
c)
=> Vxuôi.dòng=Vngược.dòng
<=> V1+V2 = V1−V2 = 6
=> V1 = 7 (km/h)
Gọi S là quãng đường :
\(V_1:V_2\) lần lượt là vận tốc của tháng máy và nguười đi bộ.
Thang máy chạy : S = 60s = 40s . V1 + 20s. V1
Nếu thang máy vừa chạy ,người đó vừa đi :
\(S=40.V_1+40.V_2\)
Ta có V1 . 20 = V2 . 40
=> S = V1 . 60s = V2 . 120s
=> Thời gian tìm là 120s = 2 phút
Câu hỏi của Phong Nguyễn Trần - Vật lý lớp 8 | Học trực tuyến
tìm trc đi suy nghĩ mệt lắm
2.
a,Gọi v, v' lần lượt là vận tốc thuyền, vận tốc nước.
Do thời gian đi bé hơn thời gian về.
=> lúc đi cuôi dòng lúc về ngược dòng.
b, Ta có: \(v+v'=\dfrac{s}{t_1}=\dfrac{16}{1}=16\left(\dfrac{km}{h}\right)\left(1\right)\)
\(v-v'=\dfrac{s}{t_2}=\dfrac{16}{1,5}=11,7\left(\dfrac{km}{h}\right)\left(2\right)\)
Lấy (1)+(2) ta có: \(2v=27.7\Rightarrow v=13,85\left(\dfrac{km}{h}\right)\)
\(\Rightarrow v'=2,15\left(\dfrac{km}{h}\right)\)
c,P/s: Vận tốc thuyền so với nước ám chỉ vân tốc xuôi dòng đó.
Theo bài ra ta có: \(t_3=\dfrac{s}{v-v'}=\dfrac{16}{v-v'}=1\Rightarrow v-v'=\dfrac{16}{1}=16\left(\dfrac{km}{h}\right)\)
Vậy ............