Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)
\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)
Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)
Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)
Vậy \(A>B\)
b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)
Bài 1 :
Bạn áp dụng quy tắc :
Bước 1 : Tìm SSH
(Số cuối - Số đầu) : Khoảng cách + 1
Bước 2 : Tìm tổng
(số đầu + số cuối) x SSH : 2
Bài 2:
a) (x - 13) x 25 = 0
=> x - 13 = 0
=> x = 13
b) 2 x X - 5 = x + 5
1 x X - 5 = 5
X - 5 = 5
X = 5 + 5
X = 10
Mình làm hơi lâu! bạn thông cảm
Chúc bạn hok tốt nha!@
Bài 1 :
Bạn áp dụng quy tắc :
Bước 1 : Tìm SSH
(Số cuối - Số đầu) : Khoảng cách + 1
Bước 2 : Tìm tổng
(số đầu + số cuối) x SSH : 2
Bài 2:
a) (x - 13) x 25 = 0
=> x - 13 = 0
=> x = 13
b) 2 x X - 5 = x + 5
1 x X - 5 = 5
X - 5 = 5
X = 5 + 5
X = 10
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+....+\frac{2019}{2018.2019}\)
\(=\frac{2019}{1}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+....+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{2019}{1}.\frac{2018}{2019}\)
\(=2018\)
\(A=\frac{2019}{2}+\frac{2019}{6}+\frac{2019}{12}+\frac{2019}{20}+\frac{2019}{30}+\frac{2019}{2018.2019}\)
\(A=\frac{2019}{1.2}+\frac{2019}{2.3}+\frac{2019}{3.4}+\frac{2019}{4.5}+\frac{2019}{5.6}+...+\frac{2019}{2018.2019}\)
\(A=2019.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\right)\)
\(A=2019.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=2019.\left(1-\frac{1}{2019}\right)\)\(=2019.\frac{2018}{2019}=2018\)
Vậy A = 2018
-Dấu " . " là dấu nhân.
3/4 x 8/9 x 15/16 x ... x 99/100 x 120/121 = 3 x 8 x 15 x 99 x 120/ 4 x 9 x 16 x 100 x 121
= ( 1 x 3 ) x ( 2 x 4 ) x ( 3 x 5 ) x ... x ( 9 x 11 ) x ( 10 x 12 ) / ( 2 x 2 ) x ( 3 x 3 ) x ( 4 x 4 ) x ... x ( 10 x 10 ) x ( 11 x 11 )
= ( 1 x 2 x 3 x ... x 10 ) x ( 3 x 4 x 5 x ... x 12 ) / ( 2 x 3 x ... x 11 ) x ( 2 x 3 x ... x 11 ) = 12/11x2 = 6/11
\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)
\(\Leftrightarrow2x-4,36=1\)
\(\Leftrightarrow2x=5,36\)
\(\Leftrightarrow x=2,68\)
b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)
Bài 1:
a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)
\(\frac{2\cdot x-4,36}{0,125}=8\)
\(2\cdot x-4,36=8\cdot0,125\)
\(2\cdot x-4,36=1\)
\(2\cdot x=1+4,36\)
\(2\cdot x=5,36\)
\(x=\frac{5,36}{2}=2,68\)
b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)
\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)
\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)
\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)
Bài 2:
a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )
\(x+5,2=4,7\cdot3,2+0,5\)
\(x+5,2=15,54\)
\(x=15,54-5,2=10,34\)
b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)
Bài 3:
a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)
\(x\cdot\left(104,5-14,1+9,6\right)=25\)
\(x\cdot100=25\)
\(x=\frac{25}{100}=\frac{1}{4}=0,25\)
b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)
\(2022\times2005-2000\times2022+15\times2022-20\times2021\)
\(=2022\times\left(2005-2000+15\right)-20\times2021\)
\(=2022\times20-20\times2021\)
\(=20\times\left(2022-2021\right)\)
\(=20\times1\)
\(=20\)
a, 2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 - 20 \(\times\) 2021
= (2022 \(\times\) 2005 - 2000 \(\times\) 2022 + 15 \(\times\) 2022 )- 20 \(\times\) 2021
= 2022 \(\times\) (2005 - 2000 + 15) - 20 \(\times\) 2021
= 2022 \(\times\) (5 +15) - 20 \(\times\) 2021
= 2022 \(\times\) 20 - 20 \(\times\) 2021
= 20 \(\times\) (2022 - 2021)
= 20 \(\times\) 1
= 20