K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Đi mà m.n ơi giúp mk với

8 tháng 8 2018

cái cuối dấu cộng mới biết làm,,

12 tháng 11 2017

Ta có: \(2x^3+5=21\)

           \(2x^3=16\)

           \(x^3=8\)

          \(\Rightarrow x=2\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta được

\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25}{9+16}=\frac{z+9-x-16}{25-9}=\frac{x+y-9}{25}=\frac{z-x-7}{16}\)

Mà \(x=2\)

\(\Rightarrow\frac{y+2-9}{25}=\frac{z-2-7}{16}=\frac{y-7}{25}=\frac{z-9}{16}=\frac{2+16}{9}=2\)(cái này từ dãy tỉ số trên thay x vào bạn nhé!)

\(\hept{\begin{cases}y-7=2\cdot25=50\\z-9=2\cdot16=32\end{cases}}\)(nhân chéo bạn nhé!) 

\(\Leftrightarrow\hept{\begin{cases}y=50+7=57\\z=32+9=41\end{cases}}\)(2)

Thay (1) và (2) vào A, ta được:

\(A=2+57+41+2017\)

\(A=2117\)

              Vậy A=2117

12 tháng 11 2017

Chúc bạn học tốt!   hihi      :)

17 tháng 6 2016

ba điểm thẳng hàng khi chúng cùng nằm trên 1 đường thẳng 

góc có số đo bằng 90 độ thì gọi là góc vuông

tia phân giác của góc là tia nằm giữa 2 cạnh của góc và tạo với 2 cạnh ấy hai góc bằng nhau

còn chứng minh tam giác vuông thì mình ko biết .

k cho mik nhak

17 tháng 6 2016

VD như: Tam giac ABC vuông tại A , đường phân giác BD . Kẻ AE vuông góc vs BD , AE cắt BC ở K 

a) C/M tam giác ABK cân tại B 

b) C/M DK vuông góc vs BC 

c) Kẻ AH vuông góc BC .C/M AK là tia phân giác của góc HAC

d) Gọi I là giao điểm của AH và BD . C/M IK // AC. 

BẠN LÀM CHO MK BÀI NÀY ĐC KO

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

14 tháng 10 2016

a, ( 44 - x ) / 3 = ( x - 12 ) / 5

=> 5 ( 44 - x  ) = 3 ( x - 12 )

     220 - 5x     = 3x  - 36

     - 5x - 3x     = - 36 - 220

      - 8 x          = - 256

           x          = 32

b , ( 3 - x ) / 4 = ( 2x + 7 ) / 5

=> 5 ( 3 - x )   = 4 ( 2x + 7 )

     15 - 5x      = 8 x  + 28

     - 5 x - 8 x  = 28 - 15

        - 13 x     = 13

               x     = -1

14 tháng 10 2016

a, \(\frac{\left(44-x\right)}{3}=\frac{\left(x-12\right)}{5}\)

 => (44 - x) . 5 = (x - 12) . 3

 => 44 - x . 5   = x - 12 .3

 => 44 - x . 5   = x - 36

 => x5 + x        = - 36 - 44

 => x5 + x        = - 80

=> x . (5 + 1)    = - 80

=> x . 6           = - 80

=> x                = - 80 : 6

=> x                = - 13,3

b, \(\frac{\left(3-x\right)}{4}=\frac{\left(2x+7\right)}{5}\)

=> (3 - x) . 5 = (2x + 7) . 4

=> 3 - x . 5   = 2x + 7 . 4

=> 3 - x . 5   = 2x + 28

=> -x . 5 + 2x = 28 - 3

=> -x . 5 + 2x = 25

=>  x . 5 + 2x = 25

=>  x . (5 + 2) = 25

=>  x . 7         = 25

=>  x              = 25 : 7

=>  x              = 3,57

22 tháng 7 2018

Ta có:

| x + 3/5 | - | x - 7/3 | = 0

=> | x + 3/5 |=

| x - 7/3 |

=>x+3/5=x-7/3 hoặc x+3/5 = -(x-7/3)

=>x-x=-7/3-3/5 hoặc x+3/5 =-x+7/3

=>0=-7/3-3/5 hoặc x+x=7/3-3/5

=>(vô lí) hoặc 2x=24/15=8/5

=>x=8/5.1/2

=>x=4/5.

Vậy....