Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^3+5=21\)
\(2x^3=16\)
\(x^3=8\)
\(\Rightarrow x=2\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25}{9+16}=\frac{z+9-x-16}{25-9}=\frac{x+y-9}{25}=\frac{z-x-7}{16}\)
Mà \(x=2\)
\(\Rightarrow\frac{y+2-9}{25}=\frac{z-2-7}{16}=\frac{y-7}{25}=\frac{z-9}{16}=\frac{2+16}{9}=2\)(cái này từ dãy tỉ số trên thay x vào bạn nhé!)
\(\hept{\begin{cases}y-7=2\cdot25=50\\z-9=2\cdot16=32\end{cases}}\)(nhân chéo bạn nhé!)
\(\Leftrightarrow\hept{\begin{cases}y=50+7=57\\z=32+9=41\end{cases}}\)(2)
Thay (1) và (2) vào A, ta được:
\(A=2+57+41+2017\)
\(A=2117\)
Vậy A=2117
ba điểm thẳng hàng khi chúng cùng nằm trên 1 đường thẳng
góc có số đo bằng 90 độ thì gọi là góc vuông
tia phân giác của góc là tia nằm giữa 2 cạnh của góc và tạo với 2 cạnh ấy hai góc bằng nhau
còn chứng minh tam giác vuông thì mình ko biết .
k cho mik nhak
VD như: Tam giac ABC vuông tại A , đường phân giác BD . Kẻ AE vuông góc vs BD , AE cắt BC ở K
a) C/M tam giác ABK cân tại B
b) C/M DK vuông góc vs BC
c) Kẻ AH vuông góc BC .C/M AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD . C/M IK // AC.
BẠN LÀM CHO MK BÀI NÀY ĐC KO
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a, ( 44 - x ) / 3 = ( x - 12 ) / 5
=> 5 ( 44 - x ) = 3 ( x - 12 )
220 - 5x = 3x - 36
- 5x - 3x = - 36 - 220
- 8 x = - 256
x = 32
b , ( 3 - x ) / 4 = ( 2x + 7 ) / 5
=> 5 ( 3 - x ) = 4 ( 2x + 7 )
15 - 5x = 8 x + 28
- 5 x - 8 x = 28 - 15
- 13 x = 13
x = -1
a, \(\frac{\left(44-x\right)}{3}=\frac{\left(x-12\right)}{5}\)
=> (44 - x) . 5 = (x - 12) . 3
=> 44 - x . 5 = x - 12 .3
=> 44 - x . 5 = x - 36
=> x5 + x = - 36 - 44
=> x5 + x = - 80
=> x . (5 + 1) = - 80
=> x . 6 = - 80
=> x = - 80 : 6
=> x = - 13,3
b, \(\frac{\left(3-x\right)}{4}=\frac{\left(2x+7\right)}{5}\)
=> (3 - x) . 5 = (2x + 7) . 4
=> 3 - x . 5 = 2x + 7 . 4
=> 3 - x . 5 = 2x + 28
=> -x . 5 + 2x = 28 - 3
=> -x . 5 + 2x = 25
=> x . 5 + 2x = 25
=> x . (5 + 2) = 25
=> x . 7 = 25
=> x = 25 : 7
=> x = 3,57
Ta có:
| x + 3/5 | - | x - 7/3 | = 0
=> | x + 3/5 |=
| x - 7/3 |
=>x+3/5=x-7/3 hoặc x+3/5 = -(x-7/3)
=>x-x=-7/3-3/5 hoặc x+3/5 =-x+7/3
=>0=-7/3-3/5 hoặc x+x=7/3-3/5
=>(vô lí) hoặc 2x=24/15=8/5
=>x=8/5.1/2
=>x=4/5.
Vậy....
x=0
x=5