K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

2 tháng 6 2018

ko biết làm

2 tháng 6 2018

a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1

       =\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)

\(\Rightarrow\)A dương với mọi x,y

2 tháng 7 2018

1/ Sửa đề a+b=1

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay a+b=1 vào M ta được:

\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)

2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng:

2n-11-12-2
n103/2 (loại)-1/2 (loại)
     

Vậy n={1;0}

2 tháng 7 2018

câu 4c phải là x-1 mới đúng chứ

21 tháng 12 2017

1) \(A=x\left(x-6\right)+10=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

Dấu "=" xảy ra khi: \(x=3\)

\(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\)

Dấu "=" xảy ra khi: \(x=y=1\)

2) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi: \(x=2\)

\(B=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi: \(x=-\dfrac{1}{2}\)

\(C\) mk nghĩ đề sai

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(C=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)

\(C=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)\)

\(C=\left(x^2+5x+5\right)^2-1\)

\(C=\left(x^2+5x+\dfrac{25}{4}-\dfrac{5}{4}\right)^2-1\)

\(C=\left[\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]^2-1\ge\dfrac{9}{16}\)

Dấu "=" xảy ra khi: \(x=-\dfrac{5}{2}\)

\(D=4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Dấu "=" xảy ra khi: \(x=2\)

\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra khi: \(x=-4\)

15 tháng 7 2019

\(D=x^2-4x-3\)

\(D=x^2-4x+4-7\)

\(D=\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

\(E=x^2-6x+1\)

\(E=x^2-6x+9-8\)

\(E=\left(x-3\right)^2-8\ge-8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

\(F=x^2+x+1\)

\(F=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(F=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

15 tháng 7 2019

\(G=x^2+x\)

\(G=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

\(G=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

\(H=2x^2-4x+2018\)

\(H=2\left(x^2-2x+1009\right)\)

\(H=2\left(x^2-2x+1+1008\right)\)

\(H=2\left[\left(x-1\right)^2+1008\right]\)

\(H=2\left(x-1\right)^2+2016\ge2016\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(I=2x^2+y^2+2x+2xy+2019\)

\(I=\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+2018\)

\(I=\left(x+y\right)^2+\left(x+1\right)^2+2018\ge2018\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

23 tháng 9 2020

a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

c) x4 - 3x2 + 9 (*)

Đặt t = x2

(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )

d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1

                                              = [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1 

                                              = [ ( x + y )2 - 2( x + y ) + 12 ] + 1

                                              = ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

23 tháng 9 2020

a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)

d) \(x^2+y^2-2x-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)

e) \(x^2+y^2-2x-2y+2xy+2\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)

\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)a) thu gọn f(x)b) Chứng tỏ f(x) k có nghiệmBài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa...
Đọc tiếp

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

 

0
19 tháng 10 2020

a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)

các câu khác dùng phương pháp tương tự

19 tháng 10 2020

a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4

Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0

b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4

Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0

c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4

Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0

d) x^2 + y^2 -2x-2y + 2xy +1

= ( x^2 + 2xy + y^2) - 2( x+y) +1

= ( x+y)^2 -2(x+y) +1

= (x +y +1)^2 >=0

g) x^2+y^2+2(x-2y)+6

= (x^2 + 2x +1) + (y^2 -4y+4) +1

= ( x+1)^2 + (y-2)^2 +1

Vì (x+1)^2; (y-2)^2 >= 0 =>  ( x+1)^2 + (y-2)^2 +1>=1>0