Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trời thì ý bn là chứng minh bất đẳng thức côsi chứ j
Đây
Ta có: \(a,b\ge0\) nên \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Áp dụng hằng đẳng thức
Ta có: \(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2-2\sqrt{a}\cdot\sqrt{b}\ge0\)
Suy ra \(a+b-2\sqrt{ab}\ge0\)
Suy ra \(a+b\ge2\sqrt{ab}\)và dấu ''='' xảy ra khi và chỉ khi a=b
Câu tiếp tương tự
Với lại hình như cái này lớp 7 đâu có học đâu mà hỏi nhỉ ????????
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{9^x}=2\cdot3^x\)
\(\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge2\sqrt{25^x}=2\cdot5^x\)
\(\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2\sqrt{16^x}=2\cdot4^x\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left[\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\right]\ge2\left(3^x+4^x+5^x\right)\)
\(\Rightarrow\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge3^x+4^x+5^x\)