K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2018

Trời thì ý bn là chứng minh bất đẳng thức côsi chứ j

Đây

Ta có: \(a,b\ge0\)  nên \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Áp dụng hằng đẳng thức

Ta có:   \(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2-2\sqrt{a}\cdot\sqrt{b}\ge0\)

Suy ra \(a+b-2\sqrt{ab}\ge0\)

Suy ra \(a+b\ge2\sqrt{ab}\)và dấu ''='' xảy ra khi và chỉ khi a=b

Câu tiếp tương tự

Với lại hình như cái này lớp 7 đâu có học đâu mà hỏi nhỉ ????????

6 tháng 4 2018

Lên GG: AM-GM

10 tháng 4 2018

Bạn nói gì thực sự ko ai hiểu

17 tháng 1 2019

Bài 1a):

Ta có:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\left(a+b\right).\dfrac{a+b}{ab}=\dfrac{a^2+2ab+b^2}{ab}=\dfrac{a^2+b^2}{ab}+2\)

Lại có: (a - b)2 = a2 - 2ab + b2 \(\ge\) 0

\(\Rightarrow\) a2 + b2 \(\ge\) 2ab

\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}\ge2\)

\(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}+2\ge4\)

Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

17 tháng 1 2019

Bài 2a):

Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

Vậy ta có đpcm

10 tháng 9 2017

a) \(2\sqrt{a^2}=2\left|a\right|=2a\) (vì \(a\ge0\))

b) \(\sqrt{3a^2}=\left|a\right|\sqrt{3}=-a\sqrt{3}\) (vì \(a< 0\))

c) \(5\sqrt{a^4}=5\sqrt{\left(a^2\right)^2}=5\left|a^2\right|=5a^2\)

d) \(\dfrac{1}{3}\sqrt{c^6}=\dfrac{1}{3}\sqrt{\left(c^3\right)^2}=\dfrac{1}{3}\left|c^3\right|=\dfrac{1}{3}\left(-c^3\right)=-\dfrac{1}{3}c^3\) (vì \(c< 0\Rightarrow c^3< 0\))

10 tháng 9 2017

\(a)2\sqrt{a^2}=2.\left|a\right|=2a\) ( vì \(a\ge0\) )

\(b)\sqrt{3a^2}=\left|a\right|\sqrt{3}=-a\sqrt{3}\) ( vì \(a< 0\) )

\(c)5\sqrt{a^4}=5\sqrt{\left(a^2\right)^2}=5\left|a^2\right|=5a^2\)

\(d)\dfrac{1}{3}\sqrt{c^6}=\dfrac{1}{3}\sqrt{\left(c^3\right)^2}=\dfrac{1}{3}\left|c^3\right|=\dfrac{1}{3}\left(-c^3\right)\) ( vì \(c< 0\Rightarrow c^3< 0\) )

Chúc bn học tốt!

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

13 tháng 9 2015

Hoàng Triều Minh Lê vậy con làm giúp pa đi 

 

ko cần nữa đâu,mình biết làm rồi