Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{a+b+2}{\left(a+1\right)\left(b+1\right)}\)
\(=\dfrac{\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}+2}{\left(\dfrac{1}{2+\sqrt{3}}+1\right).\left(\dfrac{1}{2-\sqrt{3}}+1\right)}\)
\(=\dfrac{\dfrac{2-\sqrt{3}+2+\sqrt{3}+2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{\dfrac{3+\sqrt{3}}{2+\sqrt{3}}.\dfrac{3-\sqrt{3}}{2-\sqrt{3}}}=\dfrac{6}{6}=1\)
P/s: ( Nếu sai chỗ nào ns tui vs nha chứ nhiều số quá rối luôn )
Nhận xét: \(\left[\sqrt{n^2}\right]=n\); \(\left[\sqrt{a}\right]=n-1\) với (n - 1)2 < a < n2
=> \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]=1+1+1=1.3\)
\(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]=2.5\)
\(\left[\sqrt{9}\right]+...+\sqrt{15}=3.7\)
\(\left[\sqrt{16}\right]+...+\left[\sqrt{24}\right]=4.9\)
Tương tự, nhóm các số có phần nguyên là 5; 6; 7; 8 ;9 ; 10
=> B = 1.3 + 2.5 + 3.7 + 4.9 + 5.11 + 6.13 + 7 .15 + 8.17 + 9.19 + 10.21
B = 825