Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
Để pt có 2 nghiệm trái dấu thì : P <0 hay c/a < 0
Hay : (-1) /m-4 < 0 <=> 1/m-4 .(-1) <0
<=> -1 (m-4) < 1.1 <=> -m +4 < 1 => m > 3 ( 1 )
Mặt khác ta có : |x1| = |x2|
=> x1 = - x2
=> x1 + x2 = 0
=> 2(m-1)>0
=> m>1 (2)
Vậy suy ra : m >3 ( từ (1) và (2) )
Có gì sai góp ý nha
Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)
Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)
\(\Leftrightarrow m+1>0\Rightarrow m>-1\)
\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)
Vậy không tồn tại m thỏa mãn yêu cầu đề bài
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow-\dfrac{5}{2}< m< 1\)
Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.
Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.
Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$
Do đó, khi gặp phải pt:
$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:
$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$
$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$
Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:
TH1: $x\geq 1$
TH2: $-1\leq x< 1$
TH3: $x< -1$
a: Thay x=5 vào pt, ta được:
25-5m-m-1=0
=>24-6m=0
hay m=4
b: \(\text{Δ}=\left(-m\right)^2-4\left(-m-1\right)\)
\(=m^2+4m+4=\left(m+2\right)^2\)
Để phương trình có hai nghiệm phân biệt thì m+2<>0
hay m<>-2
d: Để phương trình có hai nghiệm cùng dấu thì \(\left\{{}\begin{matrix}m>0\\-m-1>0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Ý à sao bạn.
Chắc là không á bạn