Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`\sqrt{4-x^2}+x^2 > 4` `ĐK: -2 <= x <= 2`
`<=>\sqrt{4-x^2}-(4-x^2) > 0`
`<=>\sqrt{4-x^2}(1-\sqrt{4-x^2}) > 0`
Mà `\sqrt{4-x^2} > 0 AA -2 < x < 2`
`=>1-\sqrt{4-x^2} > 0`
`<=>\sqrt{4-x^2} < 1`
`<=>4-x^2 < 1`
`<=>x^2 > 3`
`<=>[(x > \sqrt{3}),(x < -\sqrt{3}):}`
Kết hợp `-2 < x < 2`
` =>[(-2 < x < -\sqrt{3}),(\sqrt{3} < x < 2):}`
Bạn tìm GTNN theo z thì đề đúng bằng cách:
(x+y)(1/x+1/y)>=4 suy ra 1/z=1/x+1/y>=4/x+y(do x,y>0)hay 4/4z>=4/x+y suy ra x+y>=4z.
Sau đó dùng BĐT Bunhiacopxki suy ra 2(√x+√y)^2>=(x+y)^2=16z^2 suy ra
√x+√y>=√8z=2z√2
Đề chế sai rồi nhé! Cho dù là số 2 ở dưới mẫu của hay là đó là chữ a thì bài này vẫn không có min!
Tra Wolfram|Alpha để kiểm tra tính đúng đắn trước khi đăng nha! Trong wolfram alpha chỉ quan trọng ở chỗ (Global minima thôi, nó mà ra: "(no global minima found)" thì đề này sai đấy, cho dù bên dưới nó hiện cái gì đi nữa:))
Bạn chỉ cần lam cho trong căn xuất hiện hằng đẵng thức là được
VD:\(\sqrt{2+2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left(\sqrt{2}+1\right)\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a, \(=\sqrt{\left(2\sqrt{2}\right)^2+2\times2\sqrt{2}\times\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)
Sửa đề: GTLN
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{a+\sqrt{2019a+bc}}=\frac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{a+\sqrt{a^2+ab+ca+bc}}\)
\(=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{b+\sqrt{2019b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2019c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)