\(\sqrt{4-x^2}+x^2lớnhơn4\)

Mình viết "lớn hơn" tại vì mình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

`\sqrt{4-x^2}+x^2 > 4`         `ĐK: -2 <= x <= 2`

`<=>\sqrt{4-x^2}-(4-x^2) > 0`

`<=>\sqrt{4-x^2}(1-\sqrt{4-x^2}) > 0`

  Mà `\sqrt{4-x^2} > 0 AA -2 < x < 2`

  `=>1-\sqrt{4-x^2} > 0`

`<=>\sqrt{4-x^2} < 1`

`<=>4-x^2 < 1`

`<=>x^2 > 3`

`<=>[(x > \sqrt{3}),(x < -\sqrt{3}):}`

   Kết hợp `-2 < x < 2`

 ` =>[(-2 < x < -\sqrt{3}),(\sqrt{3} < x < 2):}`

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

17 tháng 10 2016

1/ Điều kiện xác định

\(\hept{\begin{cases}2IxI-1\ge0\\x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0,5orx\le-0,5\\x\le0\end{cases}}\Leftrightarrow x\le-0,5}\)

Bình phương 2 vế ta được

\(x^2=2IxI-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x=x^2+1\\2x=-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=-1\end{cases}}}\)

Vậy nghiệm pt là x = -1

2/ \(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\)

\(\ge2\sqrt{5\times180}+5=65\)

Đạt được khi x = 7

3/ \(\hept{\begin{cases}x\ge0\\-\sqrt{x}>-9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\\sqrt{x}< 9\end{cases}\Leftrightarrow0\le x< 81}\)

Có vô số giá trị thực x thỏa mãn cái đó

4/ \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)

\(\Leftrightarrow Ix-1I-Ix-2I=x-3\)

Tới đây thì đơn giản rồi b tự làm nốt nhé

17 tháng 10 2016

1 / 

đây thuộc phương trình , phần mình rất yếu 

IxI không phải là giá trị tuyệt đối của x đâu

2 /

giá trị nhỏ nhất của x = 2

nếu vậy , A = 10 + 180 = 190

nhưng đây là kết quả quá lớn , ta phải tiếp tục cho x lớn hơn nữa để có kết quả nhỏ hơn

3 /  ; 4 /

chịu 

5 tháng 6 2018

Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)

ĐK \(x\ge-4\)

\(BPT\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x\ge-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-4\end{cases}}\)

\(\Rightarrow x\ge\frac{3}{2}\)

23 tháng 10 2019

ĐK: \(x+4\ge0\) <=> \(x\ge-4\)

Bpt <=> \(\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\) hoặc \(2x-3>0\) <=> \(\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)hoặc \(x>\frac{3}{2}\)

<=> \(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)Thỏa mãn đk.

Vậy 

\(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)

15 tháng 11 2019

ĐK \(x\ge-3\)

PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)

<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)

+  Với x=-3 =>thỏa mãn 

+Với \(x>-3\) ta liên hợp

\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)

<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)

Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)

=> \(x=1\)(TMĐKXĐ)

Vậy \(x=1;x=-3\)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)