Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình:
E B A C M D H P Q K O
~~~~~
d/ fix đề: cm: H,P,Q thẳng hàng
Gọi O là giảo điểm của DE và PQ
Ta có: DE = DK (ý c) => tam giác DEK cân tại D => DP vừa là đừơng cao vừa là đường trung tuyến
=> EP = PK mà EP = QD (EQDP là hcn)
=> PK = QD(*); mặt khác: EP//QD => PK // QD(**)
Từ (*);(**) => PKDQ là hbh => PQ // DK (1)
Vì EQDP là hcn => EO = DO =1/2DE = HM
mà: HM//DE => HM//DO
=> HMDO là hbh => HO // MD
mặt khác: O thuộc PQ ; K thuộc MD
=> HQ // DK (2)
Từ (1); (2) => 3 ddiemr H,P,Q thẳng hàng (đpcm)
a)
Ta có: HE=HA(gt)
mà A,H,E thẳng hàng
nên H là trung điểm của AE
Xét ΔAED có
H là trung điểm của AE(cmt)
M là trung điểm của AD(A và D đối xứng nhau qua M)
Do đó: HM là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
⇒HM//ED và \(HM=\dfrac{1}{2}\cdot ED\)(Định lí 2 về đường trung bình của tam giác)
b) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
TÌM MỘT SỐ CÓ BÔN CHỮ SỐ,BIẾT CHỮ SỐ HÀNG TRĂM GẤP ĐÔI CHỮ SỐ HÀNG NGHÌN,CHỮ SỐ HÀNG CHỤC GẤP ĐÔI CHỮ SỐ HÀNG TRĂM, CHỮ SỐ HÀNG ĐƠN VỊ LỚN HƠN CHỮ SỐ HÀNG CHỤC LÀ 3.
bn ơi, câu này bn lm dc chưa. Nếu lm dc rôồi bn có thể gửir cho mik dc ko
A B C M H F D K I G
Câu a và b cô hướng dẫn:
a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
b) Tứ giác FDEA là hình bình hành nên AF // DE
c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)
Do tam giác ABC vuông tại A, M là trung điểm BC nên MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)
Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)
\(\Rightarrow\widehat{FAM}=90^o\)
Vậy tam giác AFM vuông.
c) Gọi giao điểm của AM và DE là G.
Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.
Vậy thì ta có ngay AFDE là hình chữ nhật.
Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.
Vậy thì AM, DE và KI đồng quy tại điểm G.