K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

\(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\)

Đặt \(\sqrt{x-a}=b\ge0\)

\(\Rightarrow2b^2-5ab+2a^2=0\)

\(\Leftrightarrow\left(b-2a\right)\left(2b-a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\sqrt{x-a}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)

30 tháng 6 2017

nếu bn đặt là b thì tại sao x bn lại cho là b2

7 tháng 6 2017

khó quá

22 tháng 1 2020

\(a,Đk:1\le x\le4\)

Đặt \(y=\sqrt{4-x}+\sqrt{2x-2}\)Ta có: \(y^2=4-x+2x-2+2\sqrt{\left(4-x\right)\left(2x-2\right)}\)

\(\Leftrightarrow x+2+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2\Leftrightarrow x+2\sqrt{\left(4-x\right)\left(2x-2\right)}=y^2-2\)

Phương trình trở thành: \(5+y^2-2=4y\)

\(\Leftrightarrow y^2-4y+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=3\end{cases}}\) ( Vì \(a+b+c=0\))

  • \(y=1.\) Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=1\Leftrightarrow\sqrt{2x-2}=1-\sqrt{4-x}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{4-x}\ge0\\2x-2=\left(1-\sqrt{4-x}\right)^2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le1\\2x-2=1-2\sqrt{4-x}+4-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}0\le4-x\le1\\2\sqrt{4-x}=7-3x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3\le x\le4;7-3x\ge0\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\varnothing\\4\left(4-x\right)=\left(7-3x\right)^2\end{cases}}\) \(\Leftrightarrow x\in\varnothing\)

  • \(y=3\)Ta có: \(\sqrt{4-x}+\sqrt{2x-2}=3\Leftrightarrow\sqrt{2x-2}=3-\sqrt{4-x}\)

\(\Leftrightarrow\hept{\begin{cases}3-\sqrt{4-x}\ge0\\2x-2=\left(3-\sqrt{4-x}\right)^2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2x-2=9-6\sqrt{4-x}+4-x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4-x}\le3\\2\sqrt{4-x}=5-x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}0\le4-x\le9;5-x\ge0\\4\left(4-x\right)=\left(5-x\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\x^2-6x+9=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}-5\le x\le4\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất là \(x=3\)

(Làm xong hoa mắt :((

14 tháng 10 2019

ĐK: \(x^2-1\ge0\)

pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)

<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)

<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)

<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)

Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!

NV
2 tháng 3 2020

ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left(2x-1\right)x-\left(2x-1\right)\sqrt{x+3}-x^2+x+3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-\sqrt{x+3}\right)-\left(x^2-x-3\right)=0\)

\(\Rightarrow\frac{\left(2x-1\right)\left(x^2-x-3\right)}{x+\sqrt{x+3}}-\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(\frac{2x-1}{x+\sqrt{x+3}}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\\frac{2x-1}{x+\sqrt{x+3}}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\x-1=\sqrt{x+3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left(x-1\right)^2=x+3\end{matrix}\right.\)

Bạn tự giải nốt