K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 7 2021

a.

\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x-\sqrt{1+x^2}\right)\left(x+\sqrt{1+x^2}\right)}+2=0\)

\(\Leftrightarrow\dfrac{2x}{x^2-1-x^2}+2=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow x=1\)

b.

ĐKXĐ: \(x\ge a\)

Đặt \(\sqrt{x-a}=t\ge0\Rightarrow x=t^2+a\)

Pt trở thành:

\(2\left(t^2+a\right)-5at+2a^2-2a=0\)

\(\Leftrightarrow2t^2-5at+2a^2=0\)

\(\Leftrightarrow\left(2t-a\right)\left(t-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{a}{2}\\t=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-a}=\dfrac{a}{2}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)

30 tháng 6 2017

\(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\)

Đặt \(\sqrt{x-a}=b\ge0\)

\(\Rightarrow2b^2-5ab+2a^2=0\)

\(\Leftrightarrow\left(b-2a\right)\left(2b-a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\sqrt{x-a}\\\sqrt{x-a}=2a\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)

30 tháng 6 2017

nếu bn đặt là b thì tại sao x bn lại cho là b2

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

31 tháng 5 2015

a:dk: x>0;x khac 1; x khac 2

 A=mở ngoăc vuông (2+căn x)^2-(2-căn x)^2+4x tất ca trên (4-x) đống ngăc vuông nhân voi (2căn x -x)/(căn x - x)

rút gon ngoăc vuông ta co (8căn x +4x)/(4-x) roi nhân vơi (2 căn x -x)/(căn x -3) rôi rút gon thu dươc 4x/(căn x -3)

b:4x/(Cx -3) > 0 * vi x >0 nen 4x > 0. vay muôn A>0 thi Cx-3 > 0 tương đương Cx>3 tương đương x>9

c; não quá tải. đợij lần sau