K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

Em gửi câu hỏi r mak

đây nek
Tìm bộ 3 số nguyên tố a,b,c sao cho a^2+b^2+c^2=abc

NV
11 tháng 11 2021

\(xy-2y=x^2+4\)

\(\Leftrightarrow y\left(x-2\right)=x^2+4\)

- Với \(x=2\) không phải nghiệm của pt

- Với \(x\ne2\)

\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)

Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)

\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)

Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:

\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

Giả sử pt có nghiệm nguyên $(x,y)$ đi.

$3x^2=2001-28y^2$ lẻ $\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên

$\Rightarrow 3(2k+1)^2+28y^2=2001$

$\Leftrightarrow  12k^2+12k+28y^2=1998$

Ta thấy vế trái chia hết cho $4$ mà vế phải $1998$ chia $4$ dư $2$

Do đó pt không có nghiệm nguyên.

30 tháng 11 2021

Con cảm ơn ạ

10 tháng 11 2021

\(2xy+x-3y=1\\ \Leftrightarrow4xy+2x-6y-2=0\\ \Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=-1\\ \Leftrightarrow\left(2x-3\right)\left(2y+1\right)=-1\)

Từ đó bạn suy ra các trường hợp thôi

 

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Bài 1:

Ta nhớ công thức \(\sin^2x=\frac{1-\cos 2x}{2}\). Áp dụng vào bài toán:

\(F(x)=8\int \sin^2\left(x+\frac{\pi}{12}\right)dx=4\int \left [1-\cos \left(2x+\frac{\pi}{6}\right)\right]dx\)

\(\Leftrightarrow F(x)=4\int dx-4\int \cos \left(2x+\frac{\pi}{6}\right)dx=4x-2\int \cos (2x+\frac{\pi}{6})d(2x+\frac{\pi}{6})\)

\(\Leftrightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+c\)

Giải thích 1 chút: \(d(2x+\frac{\pi}{6})=(2x+\frac{\pi}{6})'dx=2dx\)

\(F(0)=8\Rightarrow -1+c=8\Rightarrow c=9\)

\(\Rightarrow F(x)=4x-2\sin (2x+\frac{\pi}{6})+9\)

Câu 2:

Áp dụng nguyên hàm từng phần như bài bạn đã đăng:

\(\Rightarrow F(x)=-xe^{-x}-e^{-x}+c\)

\(F(0)=1\Rightarrow -1+c=1\Rightarrow c=2\)

\(\Rightarrow F(x)=-e^{-x}(x+1)+2\), tức B là đáp án đúng