K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

GHI RÕ CÁCH LÀM LUÔN ĐC KO Ạ

2 tháng 7 2018

a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1

Vậy GTNN của A=2018 khi x=1

b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)

\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy GTNN của B = 2019 khi x=-2,y=3

2 tháng 7 2018

ta có 

A = ( x - 1 )2 + 2018

=( x - 1 )2 + 2018≥2018

dấu "=" xảy ra khi ( x - 1 )2=0=>x=1

vs min A=2018 khi x=1

19 tháng 4 2021

Giúp mình với, mình cần gấp sáng mai phải nộp bài rồi

5 tháng 1 2020

\(x=2019\)\(\Rightarrow x+1=2020\)

\(\Rightarrow B=x^{2019}-\left(x+1\right).x^{2018}+........-\left(x+1\right).x^2+\left(x+1\right).x+1\)

        \(=x^{2019}-x^{2019}+x^{2018}+.......-x^3-x^2+x^2+x+1\)

        \(=x+1=2020\)

Vậy tại \(x=2019\)thì \(B=2020\)

5 tháng 1 2020

Ta có x=2019

   => x + 1=2020

thay x+1 vào B, ta có:

\(A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-...+\left(x+1\right)x-1\)

=> \(A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-...+x^2+x-1\)

=> \(A=x-1=2020-1=2019\)

14 tháng 10 2018

A=22019-(22018+22017+...+21+20)

Đặt M =22018+22017+...+21+20

M=22018+22017+...+2+1

2M=22019+22018+...+22+2

2M-M=(22019+22018+...+22+2)-(22018+22017+...+2+1)

M=22019-1

Suy ra:A=22019-(22019-1)

A=22019-22019+1

A=1

Vậy A=1

14 tháng 10 2018

Ta có : \(A=2^{2019}-\left(2^{2018}+2^{2017}+...+2^1+2^0\right)\)

Đặt \(B=2^0+2^1+...+2^{2017}+2^{2018}\\ \Rightarrow2B=2+2^2+...+2^{2019}\\ \Rightarrow2B-B=\left(2+2^2+...+2^{2019}\right)-\left(2^0+2^1+...+2^{2017}+2^{2018}\right)\\ \Rightarrow B=2^{2019}-2^0\\ \Rightarrow A=2^{2019}-\left(2^{2019}-2^0\right)\\ \Rightarrow A=2^0=1\)

Vậy A=1

a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)

Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)

Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)

Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)

\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)

\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)

Vậy \(y=5;x=2019\)

\(y=-5;x=2019\)

26 tháng 4 2020

giá trị biểu thức là 174

26 tháng 4 2020

Ta có x = 2018

=> x + 1 = 2019

\(x^5-2019.x^4+2019.x^3-2019.x^2+2019.x-2020\)

\(=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-2020\)

\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-2020\)

\(=x-2020\)

Thay x = 2018 vào biểu thức , ta được

\(2018-2020=-2\)

Vậy giá trị biểu thức là -2

2 tháng 1 2020

\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)

\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x>y\)

10 tháng 4 2020

cảm ơn ạ

10 tháng 4 2020

kcj đâu, thik thì trả lời thui hehe

9 tháng 10 2018

\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)

\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)

\(=2018^{2020}-2017\)