Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3+3x^2y+3xy^2+y^3-z^3\right):\left(x+y-z\right)\\ =\left[\left(x+y\right)^3-z^3\right]:\left(x+y-z\right)\\ =\left(x+y-z\right)\left[\left(x+y\right)^2+z\left(x+y\right)+z^2\right]:\left(x+y-z\right)\\ =x^2+2xy+y^2+xz+yz+z^2\)
Vậy chọn A
xz-yz-x2+2xy-y2
=(xz-yz)-(x2-2xy+y2)
=z(x-y)-(x-y)2
=(x-y)(z-x+y)
=\(x^2+2xy+y^2-xz-zy\)
=\(\left(x+y\right)^2-z\left(x+y\right)\)
=\(\left(x+y\right)\left(x+y-z\right)\)
\(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
\(x^2-2xy+y^2-yz+xz\)
\(=\left(x^2-2xy+y^2\right)+\left(xz-yz\right)\)
\(=\left(x-y\right)^2+z\left(x-y\right)\)
\(=\left(x-y+z\right)\left(x-y\right)\)
a) 2xy + 3z + 6y + xz
= (2xy + 6y) + (xz + 3z)
= 2y(x + 3) + z(x + 3)
= (2y + z)(x + 3)
b) 9x - x3
= x(9 - x2)
= x(3 + x)(3 - x)
c) xz + yz + 5.(x + y)
= (xz + yz) + 5(x + y)
= z(x + y) + 5(x + y)
= (z + 5)(x + y)
d) x2 + 4x - y2 + 4
= (x2 + 4x + 4) - y2
= (x + 2)2 - y2
= (x + 2 + y)(x + 2 - y)
có j til mik nha
a) 2xy + 3z + 6y + xz
* Gợi ý : Câu này ta dùng phương pháp nhóm hạng tử và đặt thừ số chung.
Giải :
\(=\left(2xy+6y\right)+\left(3z+xz\right)\)
\(=2y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(2y+z\right)\left(x+3\right)\)
b) 9x - x3
* Gợi ý : Câu này ta dùng phương pháp đặt thừ số chung và dùng hằng đẳng thức.
\(=9.x-x^2.x\)
\(=x\left(9-x^2\right)\)
\(=x\left[\left(3\right)^2-x^2\right]\)
\(=x.\left(3+x\right)\left(3-x\right)\)
\(xz-yz-x^2+2xy-y^2\)
\(=z\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(z-x+y\right)\)
m)xz−yz−x2+2xy−y2
\(=z.\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
= \(z.\left(x-y\right)-\left(x-y\right)^2\)
= (x-y).(z-x+y)