Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó ABEC là hình bình hành
Suy ra: AC//BE
Xét tứ giác AIEK có
AI//EK
AI=EK
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
Giả sử AB//IK thì IM//AB
Xét ΔCAB có
M là trung điểm của BC
MI//AB
Do đó: I là trung điểm của AC
áp dụng tính chất tỉ lệ thức và dãy tỉ số bằng nhau
Ta có x/y=2/7 khi và chỉ khi x/2=y/7 suy ra x+y/2+7 = -8/9
+) x/2=-8/9 suy ra x= -16/9
+) y/7= -8/9 suy ra y = -56/9
vậy x= -16/9 và y= -56/9
p/s (mik ko bit viết dấu suy ra và khi và chỉ khi nên mik để vậy nhé Thúy cute)
* tích đúng giùm mik nhé *
=>1/x=5/12+y/3
=>1/x=5/12+4y/12
=>1/x=5+4y/12
=>(5+4y).x=12
ta co bang sau:
5+4y |
12 |
1 |
-12 |
-1 |
3 |
4 |
-3 |
-4 |
6 |
2 |
-6 |
-2 |
x |
1 |
12 |
-1 |
-12 |
4 |
3 |
-4 |
-3 |
2 |
6 |
-2 |
-6 |
y |
loại |
-1 |
loại |
loại |
loại |
loại |
-2 |
loại |
loại |
loại |
loại |
loại |
vi x,y thuộc Z => khi x=12 thi y=-1
khi x=-4 thi y=-2
Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [A, C] Đoạn thẳng m: Đoạn thẳng [D, E] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng q: Đoạn thẳng [E, C] Đoạn thẳng r: Đoạn thẳng [H, D] B = (-3.4, 4.08) B = (-3.4, 4.08) B = (-3.4, 4.08) C = (1.64, 4.06) C = (1.64, 4.06) C = (1.64, 4.06) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm của j, k Điểm D: Giao điểm của j, k Điểm D: Giao điểm của j, k Điểm E: Giao điểm của c, l Điểm E: Giao điểm của c, l Điểm E: Giao điểm của c, l Điểm H: Giao điểm của p, i Điểm H: Giao điểm của p, i Điểm H: Giao điểm của p, i
Đặt tên các điểm như hình vẽ.
Xét tam giác DAC có DH là trung tuyến đồng thời đường cao nên DAC là tam giác cân tại D.
Vậy thì DA = DC và \(\widehat{DCA}=\widehat{DAC}\)
Lại có \(\widehat{DCA}=\widehat{ABC}\Rightarrow\widehat{DAC}=\widehat{ABC}\Rightarrow\widehat{EAC}=\widehat{ABD}.\)
Xét tam giác EAC và tam giác DBA có:
EA = DB
AC = BA
\(\widehat{EAC}=\widehat{DBA}\)
Vậy nên \(\Delta EAC=\Delta DBA\left(c-g-c\right)\Rightarrow CE=DA\)
Lại có DA = DC nên CE = CD hay tam giác DCE cân tại C (đpcm).
Câu 8: D.\(\dfrac{4}{5}x^4y^7\)
Câu 9:
\(7x^2y^3+8x^2y^3-2x^2y^3+M=10x^2y^3\)
\(M=\) \(10x^2y^3-7x^2y^3-8x^2y^3+2x^2y^3\)
\(M=\left(10-7-8+2\right)x^2y^3\) \(=-3x^2y^3\)
Vậy: M là \(-3x^2y^3\)
Câu 10: MIK KHÔNG BIẾT LÀM CÂU NÀY XIN LỖI NHA
Câu 11:
a) \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+7x^2+2x\)
\(A\left(x\right)=x^5+\left(-3x^2+7x^2\right)+7x^4-9x^3+2x\)
\(A\left(x\right)=x^5+4x^2+7x^4-9x^3+2x\)
\(A\left(x\right)=x^5+7x^4-9x^3+4x^2+2x\)
- Hệ số cao nhất: 1 (Vì \(x^5=1x^5\) mà \(x^5\) có bậc cao nhất, nên 1 là hệ số cao nhất)
- Hệ số tự do không có (Vì những số nào có bậc là 0 mới là hệ số tự do. Ví dụ: 2,6,...)
\(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2+3\)
\(B\left(x\right)=5x^4-x^5+(x^2+3x^2)-2x^3+3\)
\(B\left(x\right)=5x^4-x^5+4x^2-2x^3+3\)
\(B\left(x\right)=-x^5+5x^4-2x^3+4x^2+3\)
- Hệ số cao nhất: \(-1\)
- Hệ số tự do: 3
NHỮNG CHỖ NÀO IN ĐẬM VÀ NGHIÊNG KHÔNG GHI NHÁ
Gọi 2 số dương đó là \(a\) và \(b\)
Theo đề bài ta có:
\(20\left(a+b\right)=140\left(a-b\right)=7ab\)
\(\Rightarrow20a+20b=140a-140b=7ab\)
\(20a+20b=140a-140b\)
\(\Rightarrow20a=140a-160b\)
\(\Rightarrow160b=120a\)
Vậy 2 số cần tìm là 160 và 120
A) dấu hiệu: số cây trồng của mỗi lớp
B) Có 5 lớp
C) trung bình cộng LÀ: 140; Mốt : 30
thank