K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

`ĐK: x > 0,x ne 4`

`a)` Thay `x=9` (t/m) vào `P` có:

`P=(1/[9-4]-1/[9+4\sqrt{9}+4).[9+2\sqrt{9}]/\sqrt{9}=4/5`

`b)` Với `x > 0,x ne 4` có:

`P=[\sqrt{x}+2-\sqrt{x}+2]/[(\sqrt{x}-2)(\sqrt{x}+2)^2].[\sqrt{x}(\sqrt{x}+2)]/\sqrt{x}`

`P=4/[x-4]`

`c)` Với `x > 0,x ne 4` có:

`P > -1<=>4/[x-4] > -1`

         `<=>4/[x-4]+1 > 0`

        `<=>[4+x-4]/[x-4] > 0<=>x/[x-4] > 0<=>[(x > 4),(x < 0):}`

                    Kết hợp đk

   `=>x > 4`.

12 tháng 8 2021

a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b) Thay x=3+2\(\sqrt{2}\)

A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)

A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)

c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0

\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)

13 tháng 8 2021

thank

18 tháng 11 2023

a: Khi x=25 thì \(A=\dfrac{5+1}{5-2}=\dfrac{6}{3}=2\)

b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+4}{x-\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)-\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=-\dfrac{3}{\sqrt{x}-2}\)

c: P=B:A

\(=\dfrac{-3}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=-\dfrac{3}{\sqrt{x}+1}\)

P<-1

=>P+1<0

=>\(\dfrac{-3+\sqrt{x}+1}{\sqrt{x}+1}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

mà x nguyên

nên \(x\in\left\{0;1;2;3\right\}\)

6 tháng 10 2023

loading...

CHÚC EM HỌC TỐT NHÁhihi

22 tháng 10 2023

giải phương trình

a)\(\sqrt{x^8}=256\)                      b)\(\sqrt{x^2-2x+1}=x-1\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

d) Để A>0 thì \(\sqrt{x}-2>0\)

hay x>4

25 tháng 11 2023

a: Sửa đề: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+6}\)

Khi x=4 thì \(A=\dfrac{\sqrt{4}}{\sqrt{4}+6}=\dfrac{2}{2+6}=\dfrac{2}{8}=\dfrac{1}{4}\)

b: \(B=\dfrac{4}{x-1}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}\)

\(=\dfrac{4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}\)

\(=\dfrac{4+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4+x+2\sqrt{x}-3+5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+6}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

Để P<0 thì \(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

mà \(\sqrt{x}>0\)

nên \(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1

25 tháng 11 2023

Anh ơi anh thức tới 11 giờ đêm giúp em với nha

a: Ta có: \(E=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right):\left(\dfrac{x-1}{\sqrt{x}}\right)\)

\(=\left(\dfrac{4\sqrt{x}+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{x-1}\)

\(=\dfrac{4x^2}{\left(x-1\right)^2}\)

b: Để E=2 thì \(4x^2=2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-2x^2+4x-2=0\)

\(\Leftrightarrow2x^2+4x-2=0\)

\(\Leftrightarrow x^2+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}-1\\x=\sqrt{2}-1\end{matrix}\right.\)

c: Ta có: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\)

Thay x=2 vào E, ta được:

\(E=\dfrac{4\cdot2^2}{1}=16\)

21 tháng 12 2021

a: \(A=\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}-1}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(\sqrt{x}-2\right)^2}{3}\)

22 tháng 12 2021

Đề bạn gõ sai, mình có sửa lại r nha

\(a,A=\dfrac{1-\sqrt{x}+1}{\sqrt{x}-1}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3}\\ x=5\Leftrightarrow A=\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{3}=\dfrac{5-2\sqrt{5}}{3}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=-1\Leftrightarrow x-2\sqrt{x}+1=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow x\in\varnothing\)