K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Hình giải tích trong không gian

13 tháng 5 2016

Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow{p}=\left(1;2;3\right)\)

Mặt phẳng (Q) có vecto pháp tuyến \(\overrightarrow{q}=\left(3;2-1\right)\)

Vì \(1:2:3\ne3:2:\left(-1\right)\) nen (P) và (Q) cắt nhau.

Do mặt phẳng (R) cần tìm có phương trình vuông  góc với cả (P) và (Q) nên (R) nhận 2 vecto \(\overrightarrow{p}\) và \(\overrightarrow{q}\) làm cặp vecto chỉ phương. 

Vậy mặt phẳng (R) có vecto pháp tuyến \(\overrightarrow{r}\) cùng phương với vecto :

\(\left[\overrightarrow{p};\overrightarrow{q}\right]=\left(\left|\begin{matrix}2&3\\2&-1\end{matrix}\right|;\left|\begin{matrix}3&1\\-1&3\end{matrix}\right|;\left|\begin{matrix}1&2\\3&2\end{matrix}\right|\right)\)

              \(=\left(-8;10;-4\right)=-2\left(4;-5;2\right)\)

Do đó có thể chọn \(\overrightarrow{r}=\left(4;-5;2\right)\)

Suy ra (R) có phương trình :

\(4\left(x-1\right)-5\left(y-1\right)+2\left(z-1\right)=0\)

hay \(\left(R\right):4x-5y+3z-1=0\)

22 tháng 5 2017

Ta có \(\overrightarrow{n}_{\beta}=\left(1;3k;-1\right);\overrightarrow{n}_{\gamma}=\left(k;-1;1\right)\)

Gọi \(d_k=\beta\cap\gamma\)

Ôn tập chương III

27 tháng 4 2017

Hỏi đáp Toán

22 tháng 5 2017

Ôn tập chương III

26 tháng 5 2017

Hình giải tích trong không gian

26 tháng 5 2017

Hình giải tích trong không gian

9 tháng 5 2017

Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .

Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .

Phương trình mặt phẳng (α) có dạng:

2(x - 2) - (y + 1) + 3(z - 2) = 0

hay 2x - y + 3z -11 = 0.


6 tháng 4 2016

\(d\left(A,\left(\alpha\right)\right)=\frac{4}{3}\)

\(\left(\beta\right)\)//\(\left(\alpha\right)\) nên phương trình \(\left(\beta\right)\) có dạng : \(x+2y-2z+d=0,d\ne-1\)

\(d\left(A,\left(\alpha\right)\right)=d\left(A,\left(\beta\right)\right)\)\(\Leftrightarrow\frac{\left|5+d\right|}{3}=\frac{4}{3}\Leftrightarrow\begin{cases}d=-1\\d-9\end{cases}\)\(\Leftrightarrow d=-9\left(d=-1loai\right)\)\(\Rightarrow\left(\beta\right):x+2y-2z-9=0\)