\(\left(\beta\right):x+3ky-z+2=0\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Hỏi đáp Toán

NV
19 tháng 3 2019

\(\overrightarrow{n_{\left(P\right)}}=\left(7;3k;m\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(k;-m;1\right)\) ; \(\overrightarrow{n_{\alpha}}=\left(1;1;-2\right)\)

Gọi d là giao tuyến của \(\left(P\right)\)\(\left(Q\right)\Rightarrow\) d có 1 vtcp \(\overrightarrow{u_d}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]\)

\(\Rightarrow\overrightarrow{u_d}=\left(3k+m^2;mk-7;-7m-3k^2\right)\)

\(d\perp\left(\alpha\right)\Rightarrow\) \(\overrightarrow{u_d}\) tương ứng tỉ lệ với \(\overrightarrow{n_{\alpha}}\)

\(\Rightarrow\frac{3k+m^2}{1}=\frac{mk-7}{1}=\frac{7m+3k^2}{2}=\frac{3k^2+m^2k}{k}=\frac{m^2k-7m}{k-2}=\frac{m\left(mk-7\right)}{k-2}\)

\(\Rightarrow\frac{mk-7}{1}=\frac{m\left(mk-7\right)}{k-2}\Rightarrow m=k-2\) (do nếu \(mk-7=0\) thì 3 thành phần của vecto \(\overrightarrow{u_d}\) đều bằng 0, vô nghĩa)

\(\Rightarrow3k+\left(k-2\right)^2=k\left(k-2\right)-7\) \(\Rightarrow\left\{{}\begin{matrix}k=-11\\m=-13\end{matrix}\right.\)

Đáp án có vấn đề thì phải, thay vào được \(\overrightarrow{u_d}=\left(136;136;-272\right)\) (đúng)

NV
19 tháng 3 2019

Bạn nói mới để ý mình xác định nhầm dấu \(\overrightarrow{n_{\alpha}}=\left(1;-1;-2\right)\) mới đúng

26 tháng 5 2017

Hình giải tích trong không gian

26 tháng 5 2017

Hình giải tích trong không gian

6 tháng 4 2016

\(d\left(A,\left(\alpha\right)\right)=\frac{4}{3}\)

\(\left(\beta\right)\)//\(\left(\alpha\right)\) nên phương trình \(\left(\beta\right)\) có dạng : \(x+2y-2z+d=0,d\ne-1\)

\(d\left(A,\left(\alpha\right)\right)=d\left(A,\left(\beta\right)\right)\)\(\Leftrightarrow\frac{\left|5+d\right|}{3}=\frac{4}{3}\Leftrightarrow\begin{cases}d=-1\\d-9\end{cases}\)\(\Leftrightarrow d=-9\left(d=-1loai\right)\)\(\Rightarrow\left(\beta\right):x+2y-2z-9=0\)

 

26 tháng 5 2017

Hình giải tích trong không gian

9 tháng 5 2017

Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .

Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .

Phương trình mặt phẳng (α) có dạng:

2(x - 2) - (y + 1) + 3(z - 2) = 0

hay 2x - y + 3z -11 = 0.


26 tháng 5 2017

Hình giải tích trong không gian