Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
\(A=x^2-xy+\frac{y^2}{4}+\frac{3}{4}\left(y^2-4y+4\right)+2013\)
\(=\left(x-\frac{y}{2}\right)^2+\frac{3}{4}\left(y-2\right)^2+2013\ge2013\)
\(B\) đề thiếu
\(C\) đề sai, dấu của \(y^2\) là âm thì không tồn tại GTNN
\(P=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
\(2Q=-4x^2-20y^2+12xy+8x-6y+4\)
\(=-\left(4x^2+9y^2+4-12xy-8x+12y\right)-11\left(y^2-\frac{6}{11}y+\frac{36}{121}\right)+\frac{97}{11}\)
\(=-\left(2x-3y-2\right)^2-11\left(y-\frac{3}{11}\right)^2+\frac{97}{11}\le\frac{97}{11}\)
\(\Rightarrow Q\le\frac{97}{22}\)
1: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
3: \(=18\left(m^2-2mn+n^2-4p^2\right)\)
\(=18\left(m-n-2p\right)\left(m-n+2p\right)\)
4: \(=9\left(a^2-2ab+b^2-4c^2\right)\)
\(=9\left(a-b-2c\right)\left(a-b+2c\right)\)
5: \(=\left(x-3y\right)\left(5a-8b\right)\)
6: \(=7\left(x^2-2xy+y^2-z^2\right)\)
\(=7\left(x-y-z\right)\left(x-y+z\right)\)
\(1,x^3-x=x\left(x^2-1\right)=x\left(x^2-1^2\right)=x\left(x-1\right)\left(x+1\right)\)
\(2,4ax^3-ax=ax\left(4x^2-1\right)=ax\left[\left(2x\right)^2-1^2\right]\) \(=ax\left(2x-1\right)\left(2x+1\right)\)
\(3,x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x\right)=\left(x-1\right).x\left(x-1\right)=x\left(x-1\right)^2\)
\(4,y-4xy+4x^2y\)
\(=y\left(1-4x+4x^2\right)\)
\(=y\left(1^2-2.1.2x+\left(2x\right)^2\right)^{ }\)
\(=y\left(1-2x\right)^2\)
a.
=5z(x^2-2x-y^2)
c. =4x^2+6x-2x-3
=(4x^2-2x)+(6x-3)
2x(2x-1)+3(2x-1)
=(2x-1)(2x+3)
a: \(5x^2z-10xyz-5y^2z\)
\(=5z\left(x^2-2xy-y^2\right)\)
b: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
c: Sửa đề: \(x^2-xy-12y^2\)
\(=x^2-4xy+3xy-12y^2\)
\(=x\left(x-4y\right)+3y\left(x-4y\right)\)
\(=\left(x-4y\right)\left(x+3y\right)\)
d: \(3x+3y-x^2-2xy-y^2\)
\(=3\left(x+y\right)-\left(x+y\right)^2\)
\(=\left(x+y\right)\left(3-x-y\right)\)
a) 2x2.(5x3-4x2y-7xy +1) =10x5-8x4y-14x3y+2x2 b) (5x -2y)(x2 -xy +1) =5x3-5x2y+5x-2x2y+2xy2-2y =5x3-7x2y+2xy2+5x-2y c) (\(\dfrac{1}{2}\)x -1)(2x -3) =x2-\(\dfrac{3}{2}\)x-2x+3 =x2-\(\dfrac{7}{2}\)x+3 d) (x +3y)2 =x2+6xy+9y2 e) (3x -2y)2 =9x2-12xy+4y2 g) (\(\dfrac{1}{4}\)x - 3y)(\(\dfrac{1}{4}\)x +3y) =\(\dfrac{1}{16}\)x2-9y2 f) (2x +3)3 =8x3+36x2+54x+27 h) (3 -2y)3 =27-54y+36y2-8y3
a) \(\left(3x^2y-11x^2-5y\right)\left(8xy-5x+6\right)\)
\(=3x^2y\left(8xy-5x+6\right)-11x^2\left(8xy-5x+6\right)-5y\left(8xy-5x+6\right)\)
\(=24x^3y^2-15x^3y+18x^2y-88x^3y+55x^3-66x^2-40xy^2+25xy-30y\)
\(=24x^3y^2-103x^3y+18x^2y+55x^3-66x^2-40xy^2+25xy-30y\)
b) \(\left(-4x^2y-5x^2+3y^3\right)\left(2x^2-xy+3y^2\right)\)
\(=-4x^2y\left(2x^2-xy+3y^2\right)-5x^2\left(2x^2-xy+3y^2\right)+3y^3\left(2x^2-xy+3y^2\right)\)
\(=-8x^4y+4x^3y^2-12x^2y^3-10x^4+5x^3y-15x^2y^2+6x^2y^3-3xy^4+9y^5\)
\(=-8x^4y+4x^3y^2-6x^2y^3-10x^4+5x^3y-15x^2y^2-3xy^4+9y^5\)
P/s: Ko chắc ạ!