Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có P(x)=x^2+ax+b ; Q(x)=x^2+cx+d
ta có x1 và x2 là nghiêm của P(x)Dán
nên \(x_1^2+ax_1+b=0;x_2^2+ax_2+b=0\)
\(\Rightarrow x_1^2=-ax_1-b\) và \(x_2^2=-ax_2-b\) (1)
Ta có x1,x2 là nghiêm của Q(x)
nên \(x_1^2+cx_1+d=0;x_2^2+cx_2+d=0\)
\(\Rightarrow x_1^2=-cx_1-d\)và \(x_2^2=-cx_2-d\) (2)
Từ (1) và (2) suy ra \(-ax_1-b=-cx_1-d\\ -ax_2-b=-cx_2-d\)
Do đó \(ax_1+b=cx_1+d\\ ax_2+b=+cx_2+d\)
Suy ra\(x_1^2+ax_1+b=x^2_1+cx_1+d\\ x^2_2+ax_2+b=x^2_2+cx_2+d\)
Nên P(x)=Q(x)
Q(x) =x2 +ax + b
P(x) = x2 +cx + d
Vì x1;x2 đều là nghiệm của P(x); Q(x)
=>x1;x2 là nghiệm của : P(x) - Q(x)=(c-a)x +(d-b)
=> PT: (c-a)x +(d-b) =0 có 2 nghiệm x1;x2
=>\(\left\{{}\begin{matrix}c-a=0\\d-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)
Nên => P(x) = Q(x) dpcm
Trời ơi! Một đóng bài thế này bạn đăng lên 1 năm sau không biết có ai giải rồi hết chưa nữa, đăng từng cái lên thôi nha bạn , vừa nhìn vào đã thấy hoa mắt chóng mặt
Giải câu 4:
x2 - xy + 7 = -23 và x - y = 5
Ta có :
xx - xy + 7 = -23
x. (x - y ) + 7 = -23
x. 5 + 7 = -23
x . 5 = (-23) - 7
x . 5 = -30
x = (-30) : 5
x = -6
1) Ta có x2 - xy + 7 = -23
\(\Rightarrow\)xx - xy = -23 - 7 = -30
\(\Rightarrow\)x(x - y) = -30
\(\Rightarrow\)x. 5 = -30
\(\Rightarrow\)x = -30 : 5 = -6
Mốt của dấu hiệu là giá trị có tần số lớn nhất trong bảng tần số
\(A=\frac{4!}{8.9.10}.\left(\frac{6.7.8}{3!}-\frac{6.7.8.9}{2!}\right)=\frac{1}{30}.\left(56-1512\right)=\frac{1}{30}.\left(-1456\right)\)
\(=-\frac{728}{15}=-48,5\left(3\right)\)
Số nguyên lớn nhất không vượt quá -48,5(3) là -49
Do đó \(\left[A\right]=-49\)
\(\Delta ABD=\Delta EBD\) => \(\widehat{A}=\widehat{E}=90^0\)
áp dụng định lí py ta go vào \(\Delta BDE\) vuông tại E
BD2 = BE2 + ED 2 ( 1 )
áp dụng định lí py ta go vào \(\Delta EDC\) vuông tại E
DC2 = DE2 + EC2 (2 )
cộng hai vế (1) và (2 ) ta có đpcm
cảm ơn bn nhìu nha ^^