K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

a) đk: \(a>0;a\ne1\)

b) Xét K = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)

\(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

Xét \(a=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)

<=> \(\sqrt{a}=1+\sqrt{2}\)

<=> K = \(\dfrac{\left(\sqrt{2}+2\right)\sqrt{2}}{\sqrt{2}+1}=2\)

c) Đẻ K < 0

<=> \(\dfrac{a-1}{\sqrt{a}}< 0\)

Mà \(\sqrt{a}>0\)

<=> a < 1

<=> 0 < a < 1

23 tháng 6 2021

thank you!

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

a) ĐK: \(a>0; a\neq 1\)

\(K=\left(\frac{a}{\sqrt{a}(\sqrt{a}-1)}-\frac{1}{\sqrt{a}(\sqrt{a}-1)}\right): \left(\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}+\frac{2}{(\sqrt{a}-1)(\sqrt{a}+1)}\right)\)

\(=\frac{a-1}{\sqrt{a}(\sqrt{a}-1)}: \frac{\sqrt{a}+1+2}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(=\frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}(\sqrt{a}-1)}. \frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}+3}\)

\(=\frac{(\sqrt{a}+1)^2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+3)}\)

b) \(a=3+2\sqrt{a}\Leftrightarrow a-2\sqrt{a}-3=0\)

\(\Leftrightarrow (\sqrt{a}-3)(\sqrt{a}+1)=0\)

\(\Rightarrow \sqrt{a}=3\)

Khi đó: \(K=\frac{(3+1)^2(3-1)}{3.(3+3)}=\frac{16}{9}\)

c) Để \(K< 0\Leftrightarrow \frac{(\sqrt{a}+1)^2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+3)}< 0\)

\(\frac{(\sqrt{a}+1)^2}{\sqrt{a}(\sqrt{a}+3)}>0, \forall a> 0; a\neq 1\), do đó \(\sqrt{a}-1< 0\Leftrightarrow 0< a< 1\)

Vậy .........

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

ĐK: \(a>0; a\neq 1\)

a) \(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

\(B=\left(\frac{a}{a-\sqrt{a}}-\frac{1}{a-\sqrt{a}}\right): \left(\frac{\sqrt{a}-1}{(\sqrt{a}+1)(\sqrt{a}-1)}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}:\left(\frac{\sqrt{a}-1}{a-1}+\frac{2}{a-1}\right)\)

\(=\frac{a-1}{a-\sqrt{a}}: \frac{\sqrt{a}+1}{a-1}=\frac{a-1}{a-\sqrt{a}}.\frac{a-1}{\sqrt{a}+1}=\frac{(a-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{(a-1)^2}{\sqrt{a}(a-1)}=\frac{a-1}{\sqrt{a}}\)

b) Ta có:
\(a=3+2\sqrt{2}=2+1+2\sqrt{2}=(\sqrt{2}+1)^2\)

\(\Rightarrow K=\frac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\frac{2+2\sqrt{2}}{\sqrt{2}+1}=\frac{2(1+\sqrt{2})}{\sqrt{2}+1}=2\)

c) \(K< 0\leftrightarrow \frac{a-1}{\sqrt{a}}< 0\Leftrightarrow a-1< 0\) (do \(\sqrt{a}>0\))

\(\Leftrightarrow a< 1\)

Vậy \(0< a< 1\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Nhật Hạ : bạn ghi trên đề bài mà.

Thực ra nó chỉ là tên biểu thức nên không quan trọng.

a: \(K=\dfrac{a-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}+1+2}{a-1}\)

\(=\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}+3}\)

\(=\dfrac{a\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

c: Vì \(\sqrt{a}+3>=3>0;\sqrt{a}>0;a\sqrt{a}+1>0\)

nên K>0 với mọi a thỏa mãn ĐKXĐ

=>Không có giá trị nào của a để K<0

a: \(K=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{a-1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a-1}{\sqrt{a}}\)

b: Thay \(a=3+2\sqrt{2}\) vào K, ta được:

\(K=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)

c: Để K<0 thì a-1<0

hay 0<a<1

16 tháng 6 2016

ĐKXĐ: a > 0

a/ \(K=\left[\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{1}{\sqrt{a}-1}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

       \(=\left[\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\frac{\sqrt{a}+3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\)

        \(=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+3}\right]\)  \(=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}\)

b/ Ta có: \(\sqrt{a}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

     \(K=\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}=\frac{\left(\sqrt{2}+2\right)\sqrt{2}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+4\right)}=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(2\sqrt{2}+1\right)}\)

            \(=\frac{\sqrt{2}}{2\sqrt{2}+1}\)

c/ \(K< 0\Leftrightarrow\frac{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+3\right)}< 0\)\(\Rightarrow\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)< 0\)

       \(\Rightarrow\sqrt{a}-1< 0\) (vì \(\left(\sqrt{a}+1\right)^2>0\))    \(\Rightarrow\sqrt{a}< 1\Rightarrow a< 1\)

               Vậy \(0< a< 1\) thì K < 0

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

13 tháng 8 2021

a,\(ĐK:x>0,x\ne1,x\ne4\)

\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)

13 tháng 8 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\) 

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)

Thay \(x=1\) vào \(A\), ta được:

\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

ĐK: \(x>0; x\neq 4\)

Có: \(K=\left(\frac{4\sqrt{x}(2-\sqrt{x})}{(2+\sqrt{x})(2-\sqrt{x})}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-2)}-\frac{2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\right)\)

\(=\frac{8\sqrt{x}-4x+8x}{(2+\sqrt{x})(2-\sqrt{x})}: \frac{\sqrt{x}-1-2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\)

\(=\frac{8\sqrt{x}+4x}{(2+\sqrt{x})(2-\sqrt{x})}.\frac{\sqrt{x}(\sqrt{x}-2)}{-\sqrt{x}+3}\)

\(=\frac{4\sqrt{x}(2+\sqrt{x})}{2+\sqrt{x}}. \frac{-\sqrt{x}}{3-\sqrt{x}}=\frac{-4\sqrt{x}.\sqrt{x}}{3-\sqrt{x}}=\frac{4x}{\sqrt{x}-3}\)

b)

\(K=-1\Leftrightarrow \frac{4x}{\sqrt{x}-3}=-1\Rightarrow 4x=-(\sqrt{x}-3)\)

\(\Leftrightarrow 4x+\sqrt{x}-3=0\)

\(\Leftrightarrow (4\sqrt{x}-3)(\sqrt{x}+1)=0\)

\(\sqrt{x}+1>0\Rightarrow 4\sqrt{x}-3=0\Rightarrow x=\frac{9}{16}\)

c) \(m(\sqrt{x}-3)K>x+1\)

\(\Leftrightarrow m. (\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}>x+1\)

\(\Leftrightarrow m> \frac{x+1}{4x}\)

\(\Leftrightarrow m> max(\frac{4x}{x+1}), \forall x< 9\)

Với đk đã cho thì ta thấy \(\frac{4x}{x+1}\) có min thôi.