Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)
\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)
=> Bằng nhau
\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)
\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)
\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)
theo em là A=B
em mới học lớp 5 thôi chưa chắc đúng đâu
2017=2017
2018 hơn 2016 là 2 đơn vị
2017 lớn hơn 2016 là 1 đơn vị
2017 lớn hơn 2016 1 đơn vị
A hơn B số đăn vị là:
2-(1+1)=0
Nên A=B
thanks em nha anh sẽ xem lại
Ai có kết quả nữa thì giúp mình nha
\(A=\frac{1}{\sqrt{2018+\sqrt{2017}}+\sqrt{2017+\sqrt{2017}}};B=\frac{1}{\sqrt{2017+\sqrt{2016}}+\sqrt{2016+\sqrt{2016}}}\)
Phương pháp liên hợp nhé. đến đây dễ thấy rồi
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
2017>2015
=>căn 2017>căn 2015
=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)
=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)
Ta có:
\(\sqrt{2016}-\sqrt{2017}=\frac{\left(\sqrt{2016}-\sqrt{2017}\right)\left(\sqrt{2016}+\sqrt{2017}\right)}{\sqrt{2016}+\sqrt{2017}}\)
\(=\frac{2016-2017}{\sqrt{2016}+\sqrt{2017}}=-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2017}-\sqrt{2018}=\frac{\left(\sqrt{2017}-\sqrt{2018}\right)\left(\sqrt{2017}+\sqrt{2018}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2017-2018}{\sqrt{2017}+\sqrt{2018}}=-\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
Ta thấy rằng:
\(\sqrt{2018}>\sqrt{2016}\)
\(\Leftrightarrow\sqrt{2017}+\sqrt{2018}>\sqrt{2016}+\sqrt{2017}\)
\(\Leftrightarrow\frac{1}{\sqrt{2017}+\sqrt{2018}}< \frac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\Leftrightarrow-\frac{1}{\sqrt{2017}+\sqrt{2018}}>-\frac{1}{\sqrt{2016}+\sqrt{2017}}\)
Vậy \(\sqrt{2017}-\sqrt{2018}>\sqrt{2016}-\sqrt{2017}\)
bawngf nhau