K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

a)1/7\(\sqrt{51}\)=\(\sqrt{\frac{51}{49}}\);1/9\(\sqrt{150}=\sqrt{\frac{150}{81}}=\sqrt{\frac{50}{27}}\)

\(\frac{51}{49}=1+\frac{1}{49}+\frac{1}{49}\);\(\frac{50}{27}=1+\frac{23}{27}>1+\frac{23}{36}>\)\(1+\frac{2}{36}=1+\frac{1}{36}+\frac{1}{36}\)

1/49<1/36 nên 51/49<50/27 =>1/7\(\sqrt{51}\)<1/9\(\sqrt{150}\)

b) \(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}\)+\(\sqrt{2015}\)

=>\(\frac{1}{\sqrt{2017}+\sqrt{2016}}< \)\(\frac{1}{\sqrt{2016}+\sqrt{ }2015}\) <=> \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}\)-\(\sqrt{2015}\)

b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)

nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)

30 tháng 12 2015

tick đi sau làm cho

t

30 tháng 12 2015

Big hero 6 đáp án là > mà Mài hả bưởi

AH
Akai Haruma
Giáo viên
13 tháng 9 2018

Lời giải:

a)

Ta có: \(\frac{1}{7}\sqrt{51}< \frac{1}{7}\sqrt{64}=\frac{8}{7}\)

\(\frac{1}{9}\sqrt{150}> \frac{1}{9}\sqrt{144}=\frac{12}{9}=\frac{4}{3}=\frac{8}{6}> \frac{8}{7}\)

Do đó: \(\frac{1}{7}\sqrt{51}< \frac{1}{9}\sqrt{150}\)

b)

\(\sqrt{2017}-\sqrt{2016}=\frac{2017-2016}{\sqrt{2017}+\sqrt{2016}}=\frac{1}{\sqrt{2017}+\sqrt{2016}}< \frac{1}{\sqrt{2016}+\sqrt{2015}}\)

\(\sqrt{2016}-\sqrt{2015}=\frac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\frac{1}{\sqrt{2016}+\sqrt{2015}}\)

Do đó:

\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

27 tháng 9 2018

bạn ơi cho mình hỏi câu b bạn áp dụng cách nào để suy căn 2017 - căn 2016 thành phân số như vậy vậy? mình chưa hiểu rõ lắm :((

2 tháng 10 2018

\(\dfrac{1}{7}\sqrt{51}với\dfrac{1}{9}\sqrt{150}\)

<=> \(\dfrac{\sqrt{51}}{7}với\dfrac{\sqrt{150}}{9}\)

<=> \(9\sqrt{51}với7\sqrt{150}\)

<=> \(\sqrt{4131}với\sqrt{7350}\)

=> \(\sqrt{4131}< \sqrt{7350}\)

=> \(\dfrac{1}{7}\sqrt{51}< \dfrac{1}{9}\sqrt{150}\)

15 tháng 6 2018

\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)

\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)

=> Bằng nhau

16 tháng 6 2018

\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)

\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)

\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)

17 tháng 8 2017

Ta có:

\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)

\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)

Suy ra:

\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)

Vậy Q < R.