K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Không dùng máy tính bỏ túi, tính \(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)

Ta có:

\(8^{10}-4^{10}=4^{10}\left(2^{10}-1\right)=4^6.4^4\left(2^{10}-1\right)=2^{12}.4^4\left(2^{10}-1\right)\)

\(4^{11}-8^4=4^4\left(4^7-2^4\right)=4^4\left(2^{14}-2^4\right)=4^4.2^4\left(2^{10}-1\right)\)

Do đó: \(\dfrac{8^{10}-4^{10}}{4^{11}-8^4}=\dfrac{2^{12}.4^4\left(2^{10}-1\right)}{2^4.4^4\left(2^{10}-1\right)}=\dfrac{2^{12}}{2^4}=2^{12-4}=2^8\)

Vậy \(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}=\sqrt{2^8}=\sqrt{\left(2^4\right)^2}=2^4=16\)

20 tháng 7 2017

cảm ơn bạn

9 tháng 8 2018

\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)

\(=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)

\(=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)

\(=\sqrt{\frac{2^{20}}{2^{12}}}\)

\(=\sqrt{2^8}\)

\(=2^4\)

\(=16\)

=.= hok tốt!!

22 tháng 7 2017

\(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)

\(M=\sqrt{\dfrac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}\)

\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)

\(M=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)

\(M=\sqrt{2^8}=16\)

17 tháng 11 2021

\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{2^8}=\sqrt{16^2}=16\)

12 tháng 8 2016

a,  \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)

c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)

d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)

\(=>-12< -3.\sqrt{11}\) 

 

23 tháng 4 2017

a. Ta có : \(\sqrt{8}< \sqrt{9}\) ( vì 8< 9)

hay \(2\sqrt{2}< 3\)

\(\Rightarrow\) \(2\sqrt{2}+6< 3+6\)

hay \(2\sqrt{2}+6< 9\)

b. Ta có : \(\sqrt{6}>\sqrt{4}\) (vì 6 > 4 )

hay \(\sqrt{2.3}>2\)

\(\Rightarrow\) 2\(\sqrt{2.3}\) > 4

\(\Rightarrow\) 2 + \(2\sqrt{2.3}\) + 3 > 9

hay \(\left(\sqrt{2}+\sqrt{3}\right)^2\)> 9

\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}>3\)

c. Ta có: \(\sqrt{80}>\sqrt{49}\) (vì 80>49)

hay \(4\sqrt{5}\) > 7

\(\Rightarrow\) 9 + \(4\sqrt{5}\) > 16

d. Ta có : \(2\sqrt{33}>2\sqrt{25}\) (vì 33> 25 ) hay \(2\sqrt{23}>2.5\)

\(\Rightarrow\) - \(2\sqrt{33}\) < - 2.5

\(\Rightarrow\) 11 - \(2\sqrt{11.3}\) +3 < 11- 2.5 +3

hay \(\left(\sqrt{11}-\sqrt{3}\right)^2\) < 4

\(\Rightarrow\) \(\sqrt{11}-\sqrt{3}< 2\)

30 tháng 7 2019

mẹo để làm bài nay là j hả bn

14 tháng 9 2020

a, 2020 lớn hơn

14 tháng 9 2020

a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)

=> \(\sqrt{2019.2021}< 2020\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)

=> \(\sqrt{2}+\sqrt{3}>3\)

c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)

=> \(9+4\sqrt{5}>16\)

d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)

=> \(\sqrt{11}-\sqrt{3}>2\)

10 tháng 10 2018

Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)

\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)

Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)

\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)

=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)

\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)

26 tháng 8 2016

a) \(9=6+3=6+\sqrt{9}\)

\(6+2\sqrt{2}=6+\sqrt{8}\)

\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)

\(3^2=9=5+4=5+\sqrt{16}\)

\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)

c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)

\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)

\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)

\(2^2=14-10=14-\sqrt{100}\)

\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)

\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)