Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vô danh
\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\frac{2^{20}.\left(2^{10}-1\right)}{2^{12}.\left(2^{10}-1\right)}}\)
\(M=\sqrt{\frac{2^{20}}{2^{12}}}\)
\(M=\sqrt{2^{20-12}}\)
\(M=\sqrt{2^8}\)
\(M=16\)
vậy \(M=16\)
P/S Đừng ai coppy bài mình nha
a, ta có
\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}< 3+4< 7\) (1)
lại có \(\sqrt{65}-1>\sqrt{64}-1>8-1>7\) (2)
từ (1) và(2) =>\(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
bài 2
\(M=\sqrt{\frac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=2^4\)
\(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}\)
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(M=\sqrt{2^8}=16\)
\(11-2\sqrt{30}=\left(\sqrt{6}-\sqrt{5}\right)^2\)
\(7-2\sqrt{10}=\left(\sqrt{5}-\sqrt{2}\right)^2\)
\(8+4\sqrt{3}=\left(\sqrt{6}+\sqrt{2}\right)^2\)
Khi đó: \(A=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}-\frac{4}{\sqrt{6}+\sqrt{2}}\)
\(=\sqrt{6}+\sqrt{5}-\sqrt{5}-\sqrt{2}-\sqrt{6}+\sqrt{2}=0\)
\(A=\frac{1}{\sqrt{11-2\sqrt{30}}}-\frac{3}{\sqrt{7-2\sqrt{10}}}+\frac{4}{\sqrt{8+4\sqrt{3}}}\)
\(=\frac{1}{\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}-\frac{3}{\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}}+\frac{2}{\sqrt{4+2\sqrt{3}}}\)
\(=\frac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\frac{3}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{2}{\sqrt{3}+1}\)
\(=\frac{6-5}{\sqrt{6}-\sqrt{5}}-\frac{5-2}{\sqrt{5}-\sqrt{2}}+\frac{3-1}{\sqrt{3}+1}\)
\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\sqrt{6}-\sqrt{5}}-\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}\)
\(=\sqrt{6}+\sqrt{5}-\sqrt{5}+\sqrt{2}+\sqrt{3}+1=\sqrt{6}+\sqrt{2}+\sqrt{3}+1\)
\(=\sqrt{2}\left(\sqrt{3}+1\right)+\sqrt{3}+1=\left(\sqrt{3}+1\right)\left(\sqrt{2}+1\right)\)
\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(=\sqrt{\frac{2^{20}}{2^{12}}}\)
\(=\sqrt{2^8}\)
\(=2^4\)
\(=16\)
=.= hok tốt!!