Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức f(x) chia cho (x - 2) thì dư 5, khi chia cho (x - 3) thì dư 7, khi chia cho (x - 2).(x - 3) được thương là x^2 - 1 và có dư. Tìm f(x)
Vì đa thức f(x) chia cho (x - 2) thì dư 5 => f(x) = (x - 2).A(x) + 5 đúng với mọi x (1)
Vì đa thức f(x) chia cho (x - 3) thì dư 7 => f(x) = (x - 3).A(x) + 7 đúng với mọi x (2)
Đa thức f(x) chia cho (x - 2).(x - 3) được thương là x^2 - 1 và có dư, mà số chia có bậc 2 => Số dư có bậc không quá 1
=> f(x) = (x - 2)(x - 3)(x^2 - 1) + ax + b đúng với mọi x (3)
Vì (1) đúng với mọi x => f(2) = 5
Vì (2) đúng với mọi x => f(3) = 7
Vì (3) đúng với mọi x => f(2) = 2a + b; f(3) = 3a + b
=> {2a + b = 5 <=> a = 2; b = 1
{3a + b = 7
=> f(x) = (x - 2)(x - 3)(x^2 - 1) + 2x + 1
= (x^2 - 5x + 6)(x^2 - 1) + 2x + 1
= x^4 - 5x^3 + 6x^2 - x^2 + 5x - 6 + 2x + 1
= x^4 - 5x^3 + 5x^2 + 7x - 5
1) Xét 4 số a,b,c,d nguyên dương
4 số đó được gọi là đôi một nguyên tố cùng nhau khi mỗi cặp số bất kỳ trong 4 số đó đều nguyên tố cùng nhau
Cụ thể như sau:
Khi a,b,c,d nguyên tố cùng nhau thì:
\(\left(a,b\right)=1\) ; \(\left(a,c\right)=1\) ; \(\left(a,d\right)=1\) ; \(\left(b,c\right)=1\) ; \(\left(b,d\right)=1\) ; \(\left(c,d\right)=1\)
2) Theo đề bài ta có: \(\hept{\begin{cases}f\left(x\right)=\left(x+2\right)\cdot P+8\\f\left(x\right)=\left(x-2\right)\cdot Q+20\end{cases}}\) với P,Q là các đa thức
Từ đó suy ra: \(\hept{\begin{cases}f\left(-2\right)=\left(-2+2\right)\cdot P+8=8\\f\left(2\right)=\left(2-2\right)\cdot Q+20=20\end{cases}}\) (1)
Mà khi f(x) chia x2 - 4 được thương là -5x và còn dư nên ta có:
G/s f(x) có dạng: \(f\left(x\right)=\left(x^2-4\right)\cdot\left(-5x\right)+mx+n=\left(x-2\right)\left(x+2\right)\left(-5x\right)+mx+n\)
Từ (1) ta có: \(\hept{\begin{cases}\left(-2-2\right)\left(-2+2\right)\left(-5.2\right)-2m+n=8\\\left(2-2\right)\left(2+2\right)\left(-5.2\right)+2m+n=20\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2m+n=8\\2m+n=20\end{cases}}\Rightarrow\hept{\begin{cases}m=3\\n=14\end{cases}}\)
Vậy \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+3x+14\)
\(=-5x^3+20x+3x+14\)
\(=-5x^3+23x+14\)
vip
vip
vip
chúc bạn học ngu
Áp dụng định lý Bê-du về phép chia đa thức , dư khi chia \(x^8\)cho \(x+\frac{1}{2}\)là \(\left(-\frac{1}{2}\right)^8=\frac{1}{2^8}\)
Do đó :\(x^8=\left(x+\frac{1}{2}\right)B\left(x\right)+\frac{1}{2^8}\)
\(\Rightarrow B\left(x\right)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)\)
Tiếp tục áp dụng định lý Bê-du , dư khi chia \(B\left(x\right)\)cho \(x+\frac{1}{2}\)là \(B\left(-\frac{1}{2}\right)\)
Do đó :
\(r_2=B\left(-\frac{1}{2}\right)=\left(\frac{-1}{2}-\frac{1}{2}\right)\left[\left(-\frac{1}{2}\right)^2+\frac{1}{2^2}\right]\left[\left(-\frac{1}{2^4}+\frac{1}{2^4}\right)\right]=-\frac{1}{16}\)