Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a= 143k +22
=> a = 11 . 13k+ 11 . 2
=>a=11.(13k+2) chia hết cho 11
Vậy a chia hết cho 11
a,khi y chia cho 12 dư 8 thì \(y=12a+8\)(a là thương sau phép chia)
\(\Rightarrow y=4\left(3a+2\right)\)chia hết cho 4
b, Khi y chia cho 18 còn dư 9 thì \(y=18a+9\)\(\Rightarrow y=9\left(2a+1\right)=3\cdot3\left(2a+1\right)\)chia hết cho 3
một só chia cho 6 dư 4 hỏi chia cho 3 dư mấy bạn kẹo ngọt chia giải thích dễ hiểu lắm ác bạn khác giúp mình với
a có dạng:
a=143q+22
mà 143 chia hết cho 11 => 143q chia hết cho 11
22 chia hết cho 11
=> 143q+22 chia hết cho 11 hay a chia hết cho 11
Vậy...
=>a=143.k+22
mà 143 chia hết cho 11 =>143 . k chia hết cho 11
và 22 cũng chia hết cho 11
vậy a=143 . k +22 chia hết cho 11 (đpcm)
ta có
a :28 = x dư 22 =>a=x.28+22
b:14 =y dư 13 => b=y.14+13
=>a+b=x.28+22+y.14+13=x.28+y.14+35
vì x.28 chia hết cho 7
y.14 chia hết cho 7
35 chia hết cho 7
nên x.28+y.14+35 chia hết cho 7 hay a+b chia hết cho 7
Bạn làm khác mình nhưng kết quả đúng rồi ^^ k bn nè
1. a chia cho 12 dư 8
=>a=12.k+8
=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)
a không chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
a : 143 = b dư 22
=> a = 143b + 22
a = 11(13b+2) chia hết 11
a chia hết 11
li ke cho mik nha
chua biết phải xem
a=143.k+22
143:11=13
vậy a=11.13.k+22=11(13k+2) vay chia het cho 11