Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3
(A - B)3 = A3 - 3A2B + 3AB2 -B3
a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1
b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)
\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)
= \(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)
c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)
\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)
\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)
d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)
= 27x3 - 27x2y2 + 9xy4 - y6
= -y6 + 9xy4 - 27x2y2 + 27x3
Tương tự câu cuối :>
Câu 1:
(3x+1)2_(x-2)2
=[(3x)2+2×3x×1+13]-[x2+2×x×2+22]
=(9x2+6x+1)-(x2+4x+4)
=9x2+6x+11-x2-4x-4
Câu 2 :
(y-3)2-(y-1)2
=(y2-2×y×3+32)-(y2+2×y×1+1)
= y2-6y+99-y2-2y-1
a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)
d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)
a, 81 - y2 = 92 - y2 = ( 9 - y ).( 9 + y )
b, ( x - 3y )3 = x3 - 3x2.3y + 3x.( 3y )2 - ( 3y )3 = x3 - 9x2y + 27xy2 - 27y3
c, ( 2x + 2 )3 = ( 2x )3 + 3.( 2x )2.2 + 3.2x.22 + 23 = 8x3 + 24x2 + 24x + 8
a, 81 - y2 = 92 - y2 = ( 9 - y ).( 9 + y )
b, ( x - 3y )3 = x3 - 3x2 .3y + 3x.( 3y )2 - ( 3y )3 = x3 - 9x2y + 27xy2 - 27y3
c, ( 2x + 2 )3 = ( 2x )3 + 3.( 2x )2 .2 + 3.2x.22 + 23 = 8x3 + 24x2 + 24x + 8
ok thế là xong
a, \(\left(x+2\right)^2=x^2+4x+2^2=x^2+4x+4\)
b, \(\left(x-1\right)^2=x^2-2x+1\)
c, \(\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)
Dựa vào công thức làm nốt nhé
a) ( x + 2 )2 = x2 + 4x + 4
b) ( x - 1 )2 = x2 - 2x + 1
c) ( x2 + y2 )2 = x4 + 2x2y2 + y4
d) ( x3 + 2y2 )2 = x6 + 4x3y2 + 4y4
e) ( x2 - y2 )2 = x4 - 2x2y2 + y4
f) ( x - y2 )2 = x2 - 2xy2 + y4
Phần a? phải là \(4a^2-4a+1\)chứ
a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)
\(=\left(2a+1\right)^2\)
b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)
\(=\left(3x-5y\right)\left(3x+5y\right)\)
c) \(1-2x+a^2=\left(1-a\right)^2\)
d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)
\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)
nếu có sai thì bn thông cảm
1.
b) nó là hằng đẳng thức rồi bn nhá
c) \(1-2a+a^2\)= \(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)
d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)
2.
a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)
b) Ko khai triển đc
c) \(4x^2+2xy+\frac{1}{4}y^2\)
a, \(\left(2x-1\right)^2=\left(2x\right)^2-2.2x.1+1^2=4x^2-4x+1\) 1
b, \(\left(3x+1\right)^2=\left(3x\right)^2+2.3x.1+1^2\) \(=9x^2+6x+1\)
c, \(\left(\frac{1}{2}x+1\right)^3\) = \(\left(\frac{1}{2}x\right)^3+3.\left(\frac{1}{2}x\right)^2.1+3.\frac{1}{2}x.1^2+1^3\)
= \(\frac{1}{8}x^3+\frac{3}{4}x^2+\frac{3}{2}x+1\)
d, \(-x^2+100\) = \(x^2+10^2\)
\(a,\left(3x+1\right)^3=9x^3+9x^2+9x+1\)
\(b,\left(\frac{2}{3}x+1\right)^2=\frac{4}{9}x^2+\frac{4}{3}x+1\)
\(c,\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)=-2y\cdot2x=-4xy\)
\(d,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)