Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3
(A - B)3 = A3 - 3A2B + 3AB2 -B3
a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1
b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)
\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)
= \(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)
c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)
\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)
\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)
d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)
= 27x3 - 27x2y2 + 9xy4 - y6
= -y6 + 9xy4 - 27x2y2 + 27x3
Tương tự câu cuối :>
Bài 1:
1.1
a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)
\(=x^2-y^2+2x^2-x+y^2+y\)
\(=3x^2-x+y\)
b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:
\(A=3\cdot1^2-1+2018\)
\(=2+2018=2020\)
Vậy: Khi x=1 và y=2018 thì A=2020
1.2
a) Ta có: \(2x^2\left(x^2-3x+1\right)\)
\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)
\(=2x^4-6x^3+2x^2\)
b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)
\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)
\(=12x^3+6x^2-6x-6x^2-3x+3\)
\(=12x^3-9x+3\)
1.3
a) Ta có: \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b) Ta có: \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
1.1
a) A= (x+y).(x-y) + x(2x-1) + y(y+1)
= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y
b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:
A= 3.12 - 1+ 2018 = 2020
1.3
a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2
b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).
Xin lỗi nha, tớ không biết làm bài 1.2.
Chúc bạn học tốt!!
\(a,xy+1-x-y\)
\(=\left(xy-y\right)+\left(1-x\right)\)
\(=y\left(x-1\right)- \left(x-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
\(b,ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
\(c,x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2\right)\left(x-2\right)\)
\(d,x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(a+x\right)+b\left(a+x\right)\)
\(=\left(a+x\right)\left(b+x\right)\)
\(e,16-x^2+2xy-y^2\)
\(=4^2-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
a) \(xy+1-x-y\)
\(=x\left(y-1\right)-\left(y-1\right)\)
\(=\left(y-1\right)\left(x-1\right)\)
b) \(ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
c) \(x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2\right)\)
d) \(x^2+ab+ax+bx\)
\(=x\left(b+x\right)+a\left(b+x\right)\)
\(=\left(b+x\right)\left(a+x\right)\)
e) \(16-x^2+2xy-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
f) \(ax^2+ax-bx^2-bx-a+b\)
\(=\left(ax^2+ax-a\right)-\left(bx^2+bx-b\right)\)
\(=a\left(x^2+x-1\right)-b\left(x^2+x-1\right)\)
\(=\left(x^2+x-1\right)\left(a-b\right)\)
\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)
\(=3x^2+15x-18x+18-3x^2+3x-1\)
\(=18-1\)
\(=17\)
\(\Rightarrow\)\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)không phụ thuộc vào biến
đpcm
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+2x-x-1\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)
\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)
Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\)
Vì \(\left(2x-y\right)^2\ge0\) với mọi x và y
\(y^2\ge0\) với mọi y
\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)
\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(C=5x-3x^2+2\)
\(C=-\left(3x^2-5x-2\right)\)
\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)
\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)
Vì \(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)
\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)
\(D=-8x^2+4xy-y^2+3\)
\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)
\(D=-\left(2x-y\right)^2-4x^2+3\)
Vì \(-\left(2x-y\right)^2\le0\) với mọi x và y
\(-4x^2\le0\) với mọi x
\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y
\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(E=x^2-8x+38\)
\(E=x^2-2.x.4+16+22\)
\(E=\left(x-4\right)^2+22\)
Vì \(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x
\(\Rightarrow Emin=22\Leftrightarrow x=4\)
\(F=6x-x^2+1\)
\(F=-\left(x^2-6x-1\right)\)
\(F=-\left(x^2-2.x.3+9-9-1\right)\)
\(F=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-3\right)^2+10\le10\)
\(\Rightarrow Fmax=10\Leftrightarrow x=3\)
a) \(3y^2\left(2y-1\right)+y-y\left(1-y+y^2\right)-y^2+y \)
= \(6y^3-3y^2+y-y+y^2-y^3-y^2+y\)
= \(5y^3-3y^2+y\)
b)\(25x-4\left(3x-1\right)+\left(5-2x\right)7\)
= \(25x-12x+4+35-14x\)
= \(-x+39\)
c) \(11x-2\left(10x-1\right)-\left(4x-1\right)\left(-2\right)\)
= \(11x-\left(20x-2\right)-\left(-8x+2\right)\)
= \(11x-20x+2+8x-2\)
= \(-x\)
d) \(\left(\frac{1}{2x}\right)3-x\left(1-2x-\frac{1}{8x^2}\right)-x\left(x+\frac{1}{2}\right)\)
= \(\frac{3}{2x}-x+2x^2+\frac{x}{8x^2}-x^2-\frac{x}{2}\)
= \(\left(\frac{3}{2x}+\frac{1}{8x}-\frac{x}{2}\right)+x^2-x\)
= \(\left(\frac{12+1-4x^2}{8x}\right)+x^2-x\)
= \(\frac{13-4x^2}{8x}+\frac{8x^3}{8x}-\frac{8x^2}{8x}\)
= \(\frac{13-4x^2+8x^3-8x^2}{8x}\)
= \(\frac{8x^3-12x^2+13}{8x}\)
= x2 - \(\frac{3}{2}\)+\(\frac{13}{8x}\)
e) \(12\left(2-3x\right)+35x-\left(x+1\right)\left(-5\right)\)
= \(24-36x+35x-\left(-5x-5\right)\)
= \(24-36x+35x+5x+5\)
= 4x + 29
a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)
d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)
a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)