Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này rất dài dòng nhưng cũng rất quen.
https://diendantoanhoc.net/topic/153766-bổ-đề-hoán-vị/
bài này tui post lên cho mn xem và chia sẻ cách làm nhé bn còn cách nào hay thì sharre hết cho mk với ;v
a) \(m\left(m-6\right)x+m=-8x+m^2-2\)
\(\Leftrightarrow x\left(m^2-6m+8\right)=m^2-m-2\)
- Xét \(m^2-6m+8=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)
Th1. Thay \(m=4\) vào phương trình ta có:
\(0.x=10\) (vô nghiệm)
Th2. Thay \(m=2\) vào phương trình ta có:
\(0.x=0\) (luôn đúng với mọi \(x\in R\))
- Xét: \(m^2-6m+8\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne4\\m\ne2\end{matrix}\right.\)
Khi đó phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
Biện luận:
- \(m=4\) phương trình vô nghiệm.
- \(m=2\) phương trình luôn có nghiệm.
- \(m\ne4\) và \(m\ne2\) phương trình có nghiệm duy nhất là:
\(x=\dfrac{m^2-m-2}{m^2-6m+8}\)
b) Đkxđ: \(x\ne-1\)
\(\dfrac{\left(m-x\right)x+3}{x+1}=2m-1\)\(\Leftrightarrow\left(m-x\right)x+3=\left(2m-1\right)\left(x+1\right)\) \(\Leftrightarrow-x^2+x\left(1-m\right)+4-2m=0\) (*)
Xét (*) có nghiệm \(x=-1\) .
Khi đó: \(-\left(-1\right)^2+\left(-1\right)\left(1-m\right)+4-2m=0\)\(\Leftrightarrow m=2\)
Xét \(m=2\) thay vào phương trình ta có:
\(\dfrac{\left(2-x\right)x+3}{x+1}=2.2-1\Leftrightarrow\left\{{}\begin{matrix}-x^2+2x+3=0\\x\ne-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\x\ne-1\end{matrix}\right.\)\(\Leftrightarrow x=3\)
Vậy với m = 2 thì phương trình có nghiệm x = 3.
Xét \(m\ne2\)
\(\Delta=\left(1-m\right)^2-4.\left(-1\right).\left(4-2m\right)=\)\(m^2-10m+17\)
Nếu \(\Delta=0\Leftrightarrow m^2-10m+17=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=5+2\sqrt{2}\\m=5-2\sqrt{2}\end{matrix}\right.\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\left(\ne-1\right)\) nếu \(m=5+2\sqrt{2}\).
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\left(\ne-1\right)\) nếu \(m=5-2\sqrt{2}\).
Nếu \(\Delta>0\Leftrightarrow m^2-10m+17>0\)\(\Leftrightarrow\left(m-5+2\sqrt{2}\right)\left(m-5-2\sqrt{2}>0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m>5+2\sqrt{2}\\m< 5-2\sqrt{2}\end{matrix}\right.\) thì phương trình có hai nghiệm phân biệt là:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\)
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Biện luận:
Nếu \(\Delta< 0\Leftrightarrow5-2\sqrt{2}< m< 5+2\sqrt{2}\) thì phương trình vô nghiệm.
Biện luận:
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5-2\sqrt{2}\right)}{2}=-2+\sqrt{2}\)
Với \(m=5-2\sqrt{2}\) thì phương trình có nghiệm kép là:
\(x_1=x_2=\dfrac{1-m}{2}=\dfrac{1-\left(5+2\sqrt{2}\right)}{2}=-2-\sqrt{2}\)
Với m = 2 thì phương trình có duy nhất nghiệm là: x = 3
Với \(m>5+2\sqrt{2}\) hoặc \(m< 5-2\sqrt{2}\) thì phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(1-m\right)+\sqrt{m^2-10m+17}}{-2}\);
\(x_1=\dfrac{-\left(1-m\right)-\sqrt{m^2-10m+17}}{-2}\)
Với \(5-2\sqrt{2}< m< 5+2\sqrt{2}\) và \(m\ne2\) thì phương trình vô nghiệm.
a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
\(\Leftrightarrow x\left(m^2+2m-3\right)=4m-4\)
Xét \(m^2+2m-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\).
Với \(m=1\) thay vào phương trình ta được:
\(0x=0\) luôn nghiệm đúng \(\forall x\in R\).
Với \(m=-3\) thay vào phương trình ta được:
\(0x=4.\left(-3\right)-4\)\(\Leftrightarrow0x=-16\) phương trình vô nghiệm.
Xét \(m^2+2m-3\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\).
Khi đó phương trình có nghiệm duy nhất: \(x=\dfrac{4}{m+3}\).
Biện luận:
Với m = 1 phương trình nghiệm đúng với mọi x thuộc R.
Với m = -3 hệ vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{4}{m+3}\).
b) Đkxđ: \(x\ne\dfrac{1}{2}\).
\(pt\Leftrightarrow\left(m+3\right)x=\left(2x-1\right)\left(3m+2\right)\)
\(\Leftrightarrow\left(5m+1\right)x=3m+2\). (*)
Xét \(5m+1=0\Leftrightarrow m=\dfrac{-1}{5}\) thay vào phương trình ta có:
\(0x=\dfrac{7}{5}\) phương trình vô nghiệm.
Xét \(5m+1\ne0\Leftrightarrow m\ne\dfrac{-1}{5}\).
Khi đó (*) có nghiệm là: \(x=\dfrac{3m+2}{5m+1}\).
Để \(x=\dfrac{3m+2}{5m+1}\) là nghiệm của phương trình thì:
\(x=\dfrac{3m+2}{5m+1}\ne\dfrac{1}{2}\)\(\Leftrightarrow2\left(3m+2\right)\ne5m+1\)\(\Leftrightarrow m\ne-3\).
Biện luận:
Với \(m=-\dfrac{1}{5}\) hoặc \(m=-3\) phương trình vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne-\dfrac{1}{5}\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{3m+2}{5m+1}\).
a) \(\left|2x-5m\right|=2x-3m\)
Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
Biện luận:
Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
Với m < 0 phương trình vô nghiệm.
b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
Biện luận:
Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).
0<x<171
nên 0<3n^2-2n+1<342
=>3n^2-2n+1<342
=>3n^2-2n-341<0
=>\(-\dfrac{31}{3}< n< 11\)
mà n là số nguyên dương
nên \(n\in\left\{1;2;...;9;10\right\}\)
Oh my god!
Nhìn đề mà méo hiểu gì đang xảy ra ở thế giới này!