Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
- Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\] - Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
Giải y bằng cách rút gọn cả 2 vế của phương trình, sau đó tách riêng biến.
\(y^2+2xy\left(m-x+3\right)^{\frac{1}{2}}+x^2m+3x^2-x^3=2x-m+1\)
tìm tập xác định bằng cách tìm nơi mà biểu thức xác định.
ký hiệu khoảng: \(\left(-\infty,\infty\right)\)
ký hiệu xây dựng tập hợp: \(\left\{x|x\inℝ\right\}\)
ĐK: \(\sqrt{x-2m}-3\ne0\Leftrightarrow x-2m\ne9\Leftrightarrow x\ne9+2m\)
Hàm số xác đinh trên khoảng (3; 5)
<=> 2m + 9 \(\le\)3 hoặc 2m + 9 \(\ge\)5
<=> m \(\le\)-3 hoặc m \(\ge\)-2
a) Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.
Vậy tập xác định của hàm số là:
D = { x ∈ R/2x + 1 ≠ 0} =
b) Tương tự như câu a), tập xác định của hàm số đã cho là:
D = { x ∈ R/x2 + 2x - 3 ≠ 0}
x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1
Vậy D = R {- 3; 1}.
c) có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0
có nghĩa với x ∈ R sao cho 3 - x ≥ 0
Vậy tập xác định của hàm số là:
D = D1 ∩ D2, trong đó:
D1 = {x ∈ R/2x + 1 ≥ 0} =
D2 = {x ∈ R/3 - x ≥ 0} =