)  Cho tam giác ABC có các góc đều nhọn. Các đường ca...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

2: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng vơi ΔABC

3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF/HB=HE/HC

Xét ΔHFE và ΔHBC có

HF/HB=HE/HC

góc FHE=góc BHC

=>ΔFHE đồng dạng với ΔBHC

2 tháng 4 2021

A B C D F E H I M N

a, Xét tam giác AFH và tam giác ADB ta có : 

^AFH = ^ADB = 900

^A _ chung 

Vậy tam giác AFH ~ tam giác ADB ( g.g )

b, Xét tam giác EHC và tam giác FHB ta có : 

^EHC = ^FHB ( đối đỉnh )

^CEH = ^BFH = 900

Vậy tam giác EHC ~ tam giác FHB ( g.g )

\(\Rightarrow\frac{EH}{FH}=\frac{HC}{HB}\Rightarrow EH.HB=HC.FH\)

c, 

2 tháng 4 2021

A B C D H E I P O M N

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

 PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

BPQC là hình thang (dấu hiệu nhận biết hình thang)

b)Ta có :

Q là trung điểm PE

Q là trung điểm AC

 Q là trung điểm hai đường chéo của tứ giác AECP

Suy ra tứ giác AECP là hình bình hành 

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

⇒ PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)

17 tháng 3 2020

Mọi người cho mình xin câu d thôi cũng được

Mình cảm ơn

22 tháng 3 2018

a) Xét  \(\Delta CAF\) và    \(\Delta BAE\) có:

   \(\widehat{CFA}=\widehat{BEA}=90^0\)

   \(\widehat{BAC}:\) chung

suy ra:   \(\Delta CAF~\Delta BAE\)

\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)\(\Rightarrow\) \(AE.AC=AF.AB\)  (ĐPCM)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

        \(\frac{AE}{AB}=\frac{AF}{AC}\)  

       \(\widehat{BAC}\)  CHUNG

suy ra:   \(\Delta AEF~\Delta ABC\)