K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

a.

\(\frac{1}{2\times3}=\frac{1}{6}\)

\(\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}\)

\(\Rightarrow\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

b.

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{2005\times2006}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2005}-\frac{1}{2006}\)

\(=1-\frac{1}{2006}\)

\(=\frac{2005}{2006}\)

Chúc bạn học tốtok

2 tháng 5 2017

a,Ta có \(\dfrac{1}{2.3}\)=\(\dfrac{1}{6}\)

\(\dfrac{1}{2}-\dfrac{1}{3}\)=\(\dfrac{3}{6}-\dfrac{2}{6}\)=\(\dfrac{1}{6}\)

=>\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2005.2006}\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2005}-\dfrac{1}{2006}\)

=\(\dfrac{1}{1}-\dfrac{1}{2006}\)

=\(\dfrac{2006}{2006}-\dfrac{1}{2006}\)

=\(\dfrac{2005}{2006}\)

2 tháng 5 2017

Ta có

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{\left(n+1\right)-n}{n.\left(n+1\right)}=\dfrac{1}{n.\left(n+1\right)}\)

Vậy \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

8 tháng 5 2017

Câu 11 :

b) Tính \(\dfrac{1}{1.2} + \dfrac{1}{2.3} + \dfrac{1}{3.4} + ... + \dfrac{1}{2005.2006}\)

= \(\dfrac{1}{1} - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} +...+ \dfrac{1}{2005} - \dfrac{1}{2006}\)

= \(1 - \dfrac{1}{2006}\)

= \(\dfrac{2005}{2006}\)

24 tháng 11 2016

Gọi d là ƯCLN(2n+5,n+3)(d\(\in\)N*)

Ta có:\(2n+5⋮d,n+3⋮d\)

\(\Rightarrow2n+5⋮d,2\cdot\left(n+3\right)⋮d\)

\(\Rightarrow2n+5⋮d,2n+6⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vì ƯCLN(2n+5,n+3)=1

\(\Rightarrow\frac{2n+5}{n+3}\) là phân số tối giản

 

Gọi d là ƯCLN(2n+5,n+3)(d

N*)

Ta có:2n+5⋮d,n+3⋮d

 

⇒2n+5⋮d,2⋅(n+3)⋮d

 

⇒2n+5⋮d,2n+6⋮d

 

⇒(2n+6)−(2n+5)⋮d

 

⇒1⋮d⇒d=1

 

Vì ƯCLN(2n+5,n+3)=1

24 tháng 11 2016

Ta có :

\(\begin{cases}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\.....\\\frac{1}{100^2}< \frac{1}{99.100}\end{cases}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1\)

24 tháng 11 2016

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

..........................

\(\frac{1}{100^2}=\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(1-\frac{1}{100}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

 

 

10 tháng 5 2016

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

   \(=3\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)

    \(=3\left(2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^8}-\frac{1}{2^9}\right)\)

    \(=3\left(2-\frac{1}{2^9}\right)=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

10 tháng 5 2016

Quy luật của nó là gì vậy sao lại 2+22+.....+28 hoặc 210

Mà bạn lại ghi là 29 quy luật của nó là gì 

20 tháng 7 2017

a, 7.9-14/3-17                             

=63-14/-14

=49/-14

=-7/2

b,0,25.2/1/3.30.0,5.8/45

=7/12.30.0,5.8/45

=35/2.0,5.8/45

=35/4.8/45

=14/9

c,9/23.5/8+9/23.3/8-9/23

=9/23.(5/8+3/8)-9/23

=9/23.1-9/23

=0

24 tháng 11 2016

Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A=\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)

A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A<\(1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

24 tháng 11 2016

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Đặt : \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Vì : \(A< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Vậy ...

8 tháng 7 2018

đề đâu hả bạn

8 tháng 7 2018

có j âu mak trả lời

8 tháng 7 2018

câu hỏi đâu bn?